¸ñ·Ï

Home

åǥÁö

[GT] °íÈ¿À² ±×·¡ÇÉ ±â¹ÝÀÇ ½´ÆÛ Ä¿ÆнÃÅÍ °³¹ß

¹ÀÇî °ø°ú ´ëÇÐ(Technical University Munich) ¿¬±¸ÆÀÀÌ °íÈ¿À² ±×·¡ÇÉ ±â¹Ý ½´ÆÛ Ä¿ÆнÃÅÍ(super capacitor)¸¦ °³¹ßÇß´Ù. ½´ÆÛ Ä¿ÆнÃÅÍ´Â ÀüÁö·Î »ç¿ëÇϵµ·Ï Àü±â ¿ë..




[Global Technology]

A team at the Technical University Munich has developed a highly efficient graphene- based supercapacitor. The basis of the energy storage device is a novel, powerful and sustainable graphene hybrid material that has comparable performance to current battery technology. 

Usually, energy storage is associated with batteries and accumulators that provide energy for electronic devices. However, in laptops, cameras, cellphones or vehicles, so-called supercapacitors are increasingly competitive.

Unlike batteries, they can store large amounts of energy very quickly and offload it just as fast. If, for instance, a train brakes when entering the station, supercapacitors can store the energy and provide it again when the train needs a lot of energy very quickly while starting up.

However, one problem with supercapacitors to date is their lack of energy density. 

The team at the Technical University Munich has now developed a graphene hybrid material for supercapacitors. It serves as the positive electrode in the energy storage device. The researchers are combining it with a proven negative electrode based on titanium and carbon.

The new energy storage device not only attains an energy density of up to 73 kWh/kg, which is roughly equivalent to the energy density of a nickel-metal hydride battery but also performs much better than most other supercapacitors at a power density of 16 kWh/kg.  The secret of the new supercapacitor is the combination of different materials - hence, chemists refer to the supercapacitor as ¡°asymmetrical.¡±

The abstract idea of combining basic materials was transferred to supercapacitors by the research team. They used the novel positive electrode of the storage unit with chemically modified graphene and combined it with a nano- structured metal-organic framework, a so-called MOF.

The performance of graphene hybrids is based on their large specific surface and controllable pore sizes as well as their high electrical conductivity. A large surface is important for good supercapacitors.  It allows for the collection of a large number of charge carriers within the material which is the basic principle for the storage of electrical energy.

Through skillful material design, the researchers achieved the feat of linking the graphene acid with the MOFs. This provides a very large inner surface of up to 900 square meters per gram.

However, that is not the only advantage of the new material. To achieve a chemically stable hybrid, one needs strong chemical bonds between the components. The more stable the bonds, the more charging and discharging cycles are possible without significant performance impairment.

For comparison: A classic lithium accumulator has a useful life of around 5,000 cycles. The new cell developed by the TUM researchers retains close to 90 percent capacity even after 10,000 cycles.

Reference:
ADVANCED MATERIALS, December 4, 2020, ¡°Covalent Graphene‐MOF Hybrids for High‐Performance Asymmetric Supercapacitors,¡± by Kolleboyina Jayaramulu, et al.  © 2020 John Wiley & Sons, Inc.  All rights reserved.

To view or purchase this article, please visit:
https://onlinelibrary.wiley.com/doi/10.1002/adma.202004560
Covalent Graphene‐MOF Hybrids for High‐ Performance Asymmetric Supercapacitors - Jayaramulu - 2021 - Advanced Materials - Wiley Online Library





[GT] °íÈ¿À² ±×·¡ÇÉ ±â¹ÝÀÇ ½´ÆÛ Ä¿ÆнÃÅÍ °³¹ß

¹ÀÇî °ø°ú ´ëÇÐ(Technical University Munich) ¿¬±¸ÆÀÀÌ °íÈ¿À² ±×·¡ÇÉ ±â¹Ý ½´ÆÛ Ä¿ÆнÃÅÍ(super capacitor)¸¦ °³¹ßÇß´Ù. ½´ÆÛ Ä¿ÆнÃÅÍ´Â ÀüÁö·Î »ç¿ëÇϵµ·Ï Àü±â ¿ë·®ÀÇ ¼º´ÉÀ» ÁßÁ¡ÀûÀ¸·Î °­È­ÇÑ Ä¿ÆнÃÅÍ·Î, º¸Åë ±³·ùÀü¿øÀ¸·ÎºÎÅÍ °ø±Þ¹Þ¾Æ ÃæÀüÇØ µÎ°í Àü¿øÀÌ ²÷¾îÁø °æ¿ì¿¡ Àü·ÂÀ» °ø±ÞÇÒ ¸ñÀûÀ¸·Î »ç¿ëÇÑ´Ù. ¿¬±¸ÆÀÀÌ °³¹ßÇÑ ÀÌ ¿¡³ÊÁö ÀúÀå ÀåÄ¡ÀÇ ±âÃÊ´Â ÇöÀç ¹èÅ͸® ±â¼ú¿¡ ÇÊÀûÇÏ´Â ¼º´ÉÀ» °¡Áø »õ·Ó°í °­·ÂÇϸç Áö¼Ó °¡´ÉÇÑ ±×·¡ÇÉ ÇÏÀ̺긮µå Àç·á¿¡ ÀÖ´Ù.

ÀϹÝÀûÀ¸·Î ¿¡³ÊÁö ÀúÀåÀº ÀüÀÚ ÀåÄ¡¿¡ ¿¡³ÊÁö¸¦ Á¦°øÇÏ´Â ¹èÅ͸® ¹× ÃàÀüÁö¿Í °ü·ÃÀÌ ÀÖ´Ù. ±×·¯³ª ·¦Åé, Ä«¸Þ¶ó, ÈÞ´ëÆù ¶Ç´Â Â÷·®¿¡¼­ ¼ÒÀ§ ½´ÆÛ Ä¿ÆнÃÅÍÀÇ °æÀïÀÌ Á¡Á¡ Ä¡¿­ÇØÁö°í ÀÖ´Ù.

¹èÅ͸®¿Í ´Þ¸®, À̵éÀº ¸¹Àº ¾çÀÇ ¿¡³ÊÁö¸¦ ¸Å¿ì ºü¸£°Ô ÀúÀåÇÏ°í ¸¶Âù°¡Áö·Î ºü¸£°Ô ¿ÀÇÁ·Îµå(offload) ÇÒ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î ±âÂ÷°¡ ¿ª¿¡ µé¾î°¥ ¶§ Á¦µ¿À» °Å´Â °æ¿ì ½´ÆÛ Ä¿ÆнÃÅÍ´Â ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù Ãâ¹ßÇÏ´Â µ¿¾È ±âÂ÷°¡ ¸Å¿ì ºü¸£°Ô ¸¹Àº ¿¡³ÊÁö¸¦ ÇÊ¿ä·Î ÇÒ ¶§ ´Ù½Ã Á¦°øÇÒ ¼ö ÀÖ´Ù.

±×·¯³ª ÇöÀç±îÁö ½´ÆÛ Ä¿ÆнÃÅÍÀÇ ÇÑ °¡Áö ¹®Á¦´Â ¿¡³ÊÁö ¹Ðµµ°¡ ºÎÁ·ÇÏ´Ù´Â °ÍÀ̾ú´Ù.

¹ÀÇî °ø°ú ´ëÇÐÀÇ ¿¬±¸ÆÀÀÌ ÀÌÁ¦ °³¹ßÇÑ °ÍÀº ½´ÆÛ Ä¿ÆнÃÅ͸¦ À§ÇÑ ±×·¡ÇÉ ÇÏÀ̺긮µå Àç·áÀÌ´Ù. ÀÌ Àç·á´Â ¿¡³ÊÁö ÀúÀå ÀåÄ¡¿¡¼­ ¾ç±Ø(positive electrode)À» ¼öÇàÇÑ´Ù. ¿¬±¸ÆÀÀº À̸¦ ƼŸ´½°ú ź¼Ò¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â ÀÌ¹Ì ÀÔÁõµÈ À½±Ø(negative electrode)°ú °áÇÕÇÏ°í ÀÖ´Ù.

ÀÌ »õ·Î¿î ¿¡³ÊÁö ÀúÀå ÀåÄ¡´Â ÃÖ´ë kg´ç 73kWhÀÇ ¿¡³ÊÁö ¹Ðµµ¸¦ ´Þ¼ºÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ÀÌ´Â ´ÏÄÌ-±Ý¼Ó ¼ö¼ÒÈ­¹° ¹èÅ͸®ÀÇ ¿¡³ÊÁö ¹Ðµµ¿Í °ÅÀÇ µ¿ÀÏÇÒ »Ó¸¸ ¾Æ´Ï¶ó k´ç 16kWhÀÇ Àü·Â ¹Ðµµ¿¡¼­´Â ´ëºÎºÐÀÇ ´Ù¸¥ ½´ÆÛ Ä¿ÆнÃÅͺ¸´Ù ÈξÀ ¿ì¼öÇÑ ¼º´ÉÀ» ¹ßÈÖÇÑ´Ù. ÀÌ »õ·Î¿î ½´ÆÛ Ä¿ÆнÃÅÍÀÇ ºñ¹ÐÀº ¼­·Î ´Ù¸¥ Àç·áÀÇ Á¶ÇÕ¿¡ ÀÖ´Ù. ÀÌ¿¡ È­ÇÐÀÚµéÀº ÀÌ ½´ÆÛ Ä¿ÆнÃÅ͸¦ ¡®ºñ´ëĪ¡¯À̶ó ºÎ¸¥´Ù.

±âº» Àç·á¸¦ °áÇÕÇÑ´Ù´Â Ãß»óÀû ¾ÆÀ̵ð¾î°¡ ¹ÀÇî ¿¬±¸ÆÀ¿¡ ÀÇÇØ ½´ÆÛ Ä¿ÆнÃÅͶó´Â ½ÇÇàÀ¸·Î ¿Å°ÜÁ³´Ù. À̵éÀº È­ÇÐÀûÀ¸·Î º¯ÇüµÈ ±×·¡ÇÉÀÌ ÀÖ´Â ÀúÀå ÀåÄ¡ÀÇ »õ·Î¿î ¾ç±ØÀ» »ç¿ëÇÏ°í À̸¦ MOF¶ó ÇÏ´Â ³ª³ë ±¸Á¶ÀÇ ±Ý¼Ó-À¯±â ±¸Á¶¿Í °áÇÕÇß´Ù.

±×·¡ÇÉ ÇÏÀ̺긮µåÀÇ ¼º´ÉÀº ³ôÀº Àü±â Àüµµ¼º»Ó¸¸ ¾Æ´Ï¶ó, Å« ºñÇ¥ ¸éÀû(specific surface)°ú Á¦¾î °¡´ÉÇÑ °ø±Ø Å©±â¸¦ ±â¹ÝÀ¸·Î ÇÑ´Ù. ¿ì¼öÇÑ ¼º´ÉÀÇ ½´ÆÛ Ä¿ÆнÃÅ͸¦ À§Çؼ­´Â ³ÐÀº Ç¥¸éÀÌ Áß¿äÇÏ´Ù. ÀÌ°ÍÀº Àü±â ¿¡³ÊÁö ÀúÀåÀÇ ±âº» ¿ø¸®ÀÎ Àç·á ³»¿¡¼­ ¸¹Àº ¼öÀÇ ´ëÀü ÀÔÀÚ(charge carriers)¸¦ ¼öÁýÇÒ ¼ö ÀÖµµ·Ï ÇÑ´Ù.

¼÷·ÃµÈ Àç·á ¼³°è¸¦ ÅëÇØ ¿¬±¸¿øµéÀº ±×·¡ÇÉ »ê(graphene acid)À» MOF¿Í ¿¬°áÇÏ´Â À§¾÷À» ´Þ¼ºÇß´Ù. ÀÌ°ÍÀº ±×·¥´ç ÃÖ´ë 900Á¦°ö¹ÌÅÍÀÇ ¸Å¿ì ³ÐÀº ³»ºÎ Ç¥¸éÀ» Á¦°øÇÑ´Ù.

±×·¯³ª ½Å¼ÒÀçÀÇ À¯ÀÏÇÑ ÀåÁ¡Àº ÀÌ°Í¿¡ ±×Ä¡Áö ¾Ê´Â´Ù. È­ÇÐÀûÀ¸·Î ¾ÈÁ¤ÀûÀÎ ÇÏÀ̺긮µå¸¦ ¾òÀ¸·Á¸é ±¸¼º ¿ä¼Ò °£ÀÇ °­ÇÑ È­ÇÐÀû °áÇÕÀÌ ÇÊ¿äÇÏ´Ù. °áÇÕÀÌ ´õ ¾ÈÁ¤ÀûÀϼö·Ï ½É°¢ÇÑ ¼º´É ¼Õ»ó ¾øÀÌ ´õ ¸¹Àº ÃæÀü ¹× ¹æÀü »çÀÌŬÀÌ °¡´ÉÇϱ⠶§¹®ÀÌ´Ù.

ºñ±³¸¦ ÇØ º¸ÀÚ. ±âÁ¸ ¸®Æ¬ ÀüÁöÀÇ ¼ö¸íÀº ¾à 5,000ÁÖ±âÀÌ´Ù. À̹ø¿¡ ¹ÀÇî ¿¬±¸ÆÀÀÌ °³¹ßÇÑ »õ·Î¿î ÀüÁö´Â 10,000¹øÀÇ »çÀÌŬ ÈÄ¿¡µµ 90%¿¡ °¡±î¿î ¿ë·®À» À¯ÁöÇÑ´Ù.

Reference:
ADVANCED MATERIALS, December 4, 2020, ¡°Covalent Graphene‐MOF Hybrids for High‐Performance Asymmetric Supercapacitors,¡± by Kolleboyina Jayaramulu, et al.  © 2020 John Wiley & Sons, Inc.  All rights reserved.

To view or purchase this article, please visit:
https://onlinelibrary.wiley.com/doi/10.1002/adma.202004560
Covalent Graphene‐MOF Hybrids for High‐ Performance Asymmetric Supercapacitors - Jayaramulu - 2021 - Advanced Materials - Wiley Online Library