¸ñ·Ï

Home

åǥÁö

[GT] °Ç¹° ³Ã³­¹æ ¿¡³ÊÁö Àý°¨¿¡ ´ëÇÑ »õ·Î¿î ±â¼ú °³¹ß

ÃÖ±Ù ³×ÀÌó Ä¿¹Â´ÏÄÉÀ̼Ç(Nature Communications) Àú³Î¿¡¼­ ¼³¸íµÈ ¹Ù¿Í °°ÀÌ, µàÅ© ´ëÇб³(Duke University)ÀÇ ¿£Áö´Ï¾îµéÀÌ ¹Ì±¹ Àü¿ª¿¡ ³Î¸® ¹èÄ¡µÇ´Â °æ¿ì ±âÁ¸ H..




What new technologies will dramatically transform your world? We¡¯ll present an exclusive preview of the stunning breakthroughs emerging from the world¡¯s leading research labs.

As recently explained in the journal Nature Communications, engineers at Duke University have demonstrated a dual-mode heating and cooling device for building climate control which, if widely deployed in the U.S., could cut HVAC energy use by nearly 20 percent.

The invention uses a combination of mechanics and materials science to either harness or expels certain wavelengths of light. Depending on conditions, rollers move a sheet back and forth to expose either heat-trapping materials on one half or cooling materials on the other. Specially designed at the nanoscale, one material absorbs the sun¡¯s energy and traps existing heat, while the other reflects light and allows heat to escape through the Earth¡¯s atmosphere and into space.

This is the first demonstration of a reversible thermal contact, which allows users to switch between the two modes for heating or cooling. This allows the material to be movable while still maintaining good thermal contact with the building to either bring the heat in or let heat out.

About 15 percent of energy consumption in the U.S., and more than 30 percent globally, is for the heating and cooling of buildings. This activity is responsible for about 10 percent of global greenhouse gas emissions. Yet, up to now, most approaches to minimize the carbon footprint have only addressed either heating or cooling. That leaves the world¡¯s temperate climate zones that require both heating and cooling out in the cold.  The new device could keep the user either warm or cool as the weather changes.

The specially designed sheet contains a polymer composite as the base which can be expanded or contracted by running electricity through it. This allows the device to maintain contact with the building for transmitting energy while still being able to disengage so that the rollers can switch between modes.

The cooling portion of the sheet has an ultra-thin silver film covered by an even thinner layer of clear silicone, which together reflect the sun¡¯s rays like a mirror.  The unique properties of these materials also convert energy into mid-range infrared light and emit it. The mid-range infrared light does not interact with the gasses in the Earth¡¯s atmosphere and easily passes into outer space.

When a change in weather brings the need for heating, the electrical charge releases, and the rollers pull the sheet along a track. This swaps the cooling, reflective half of the sheet for the heat-absorbing half.

To heat the building beneath, the engineers used an ultra-thin layer of copper-topped by a layer of zinc-copper nanoparticles. Because the nanoparticles are a specific size and are spaced a certain distance apart, they interact with the copper beneath them in a way that traps light onto their surface, allowing the material to absorb more than 93 percent of the sunlight¡¯s heat.

The Duke team sees the device as something that could enhance existing HVAC systems, rather than fully replace them. Instead of directly heating and cooling the building, engineers could use a water panel to take hot or cold water to a heat pump or boiler system. With additional engineering, this could also be used on walls, forming a sort of switchable building envelope.

Moving forward, the team wants to advance this from a prototype to a scalable system ready for manufacturing. Today, there are concerns about the long-term wear and tear on the moving parts and the costs of the specialized materials. The team will investigate whether lower-cost aluminum can substitute for the silver and they are working on a static version that can switch modes chemically rather than mechanically.

Despite the many obstacles, they believe this technology could be an energy-saving boon in the future. They¡¯re already working with a company to determine the ideal locations for deploying this technology.  And because almost every climate zone in the United States requires both heating and cooling at some point throughout the year, the advantages of a dual-mode device such as this are obvious.

[References]
Nature Communications, November 30, 2020, ¡°Integration of Daytime Radiative Cooling and Solar Heating for Year-Round Energy Saving in Buildings,¡± by Xiuqiang Li, et al.  © 2020 Springer Nature Limited.  All rights reserved.

To view or purchase this article, please visit:
https://www.nature.com/articles/s41467-020-19790-x
Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings chr(124)_pipe Nature Communications





¾î¶² ½Å±â¼úÀÌ ¼¼»óÀ» ±ØÀûÀ¸·Î º¯È­½Ãų±î? ¼¼°è ÃÖ°íÀÇ ¿¬±¸¼Ò¿¡¼­ ³ª¿À´Â ³î¶ó¿î Çõ½ÅÀ» µ¶Á¡ ¼Ò°³ÇÕ´Ï´Ù.

ÃÖ±Ù ³×ÀÌó Ä¿¹Â´ÏÄÉÀ̼Ç(Nature Communications) Àú³Î¿¡¼­ ¼³¸íµÈ ¹Ù¿Í °°ÀÌ, µàÅ© ´ëÇб³(Duke University)ÀÇ ¿£Áö´Ï¾îµéÀÌ ¹Ì±¹ Àü¿ª¿¡ ³Î¸® ¹èÄ¡µÇ´Â °æ¿ì ±âÁ¸ HVAC ¿¡³ÊÁö È°¿ëÀ» °ÅÀÇ 20%±îÁö ÁÙÀÏ ¼ö ÀÖ´Â °Ç¹° ½Ç³» ¿Âµµ Á¶ÀýÀ» À§ÇÑ ÀÌÁß ¸ðµå ³­¹æ ³Ã°¢ ÀåÄ¡¸¦ ½Ã¿¬Çß´Ù.

ÀÌ ¹ß¸íÇ°Àº ƯÁ¤ ÆÄÀåÀÇ ºûÀ» È°¿ëÇϰųª ¹æÃâÇϱâ À§ÇØ ¿ªÇÐ ¹× Àç·á °úÇÐÀÇ Á¶ÇÕÀ» È°¿ëÇÏ°í ÀÖ´Ù. Á¶°Ç¿¡ µû¶ó ·Ñ·¯´Â ½ÃÆ®¸¦ ¾ÕµÚ·Î ¿òÁ÷¿© ÇÑÂÊÀº È÷Æ® Æ®·¦ Àç·á¸¦, ´Ù¸¥ ÇÑÂÊÀº ³Ã°¢ Àç·á¸¦ ³ëÃâ½ÃŲ´Ù. ³ª³ë ½ºÄÉÀϷΠƯº°È÷ ¼³°èµÈ ÇÑ ¹°ÁúÀº ÅÂ¾ç ¿¡³ÊÁö¸¦ Èí¼öÇÏ°í ±âÁ¸ ¿­À» °¡µÎ´Â ¹Ý¸é ´Ù¸¥ ¹°ÁúÀº ºûÀ» ¹Ý»çÇÏ¿© ¿­ÀÌ Áö±¸ ´ë±â¸¦ ÅëÇØ ¿ìÁÖ·Î ºüÁ® ³ª°¡µµ·Ï ÇÑ´Ù.

ÀÌ´Â »ç¿ëÀÚ°¡ °¡¿­ ¶Ç´Â ³Ã°¢À» À§ÇØ µÎ °¡Áö ¸ðµå »çÀ̸¦ ÀüȯÇÒ ¼ö ÀÖ´Â °¡¿ªÀû ¿­ Á¢ÃË¿¡ °üÇÑ Ã¹ ¹ø° µ¥¸ð ¸ðµ¨ÀÌ´Ù. À̸¦ ÅëÇØ °Ç¹°°ú ¾çÈ£ÇÑ ¿­ Á¢ÃËÀ» À¯ÁöÇϸ鼭 Àç·á¸¦ ¿òÁ÷ÀÏ ¼ö ÀÖ°Ô ÇÏ¿© ¿­À» À¯ÀÔÇϰųª ¹æÃâÇÒ ¼ö ÀÖ´Â °ÍÀÌ´Ù.

¹Ì±¹¿¡¼­ ¿¡³ÊÁö ¼ÒºñÀÇ ¾à 15%, Àü ¼¼°èÀûÀ¸·Î 30% ÀÌ»óÀÌ °Ç¹° ³Ã³­¹æ¿¡ »ç¿ëµÇ°í ÀÖ´Ù. ÀÌ È°µ¿Àº Àü ¼¼°è ¿Â½Ç °¡½º ¹èÃâ·®ÀÇ ¾à 10%¸¦ Â÷ÁöÇÑ´Ù. ±×·¯³ª Áö±Ý±îÁö ź¼Ò ¹ßÀÚ±¹À» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ ´ëºÎºÐÀÇ Á¢±Ù ¹æ½ÄÀº ³­¹æ ¶Ç´Â ³Ã¹æ¿¡¸¸ Àû¿ëµÇ¾ú´Ù. ÀÌ·Î ÀÎÇØ ³Ã³­¹æÀÌ ¸ðµÎ ÇÊ¿äÇÑ ¼¼°è ¿Â´ë ±âÈÄ´ë´Â ³íÀÇ¿¡¼­ ¹þ¾î³ª ÀÖ¾ú´Ù. ÀÌ »õ·Î¿î ÀåÄ¡´Â ³¯¾¾°¡ º¯Çصµ »ç¿ëÀÚ¸¦ µû¶æÇÏ°Ô ¶Ç´Â ½Ã¿øÇÏ°Ô À¯ÁöÇÒ ¼ö ÀÖ´Ù.

Ư¼ö ¼³°èµÈ ½ÃÆ®¿¡´Â Àü±â¸¦ È帣°Ô ÇÏ¿© È®Àå ¶Ç´Â Ãà¼Ò ÇÒ ¼ö ÀÖ´Â Æú¸®¸Ó º¹ÇÕÀç°¡ ±âº»À¸·Î Æ÷ÇԵǾî ÀÖ´Ù. ÀÌ·¸°Ô Çϸé ÀåÄ¡°¡ °Ç¹°°úÀÇ Á¢ÃËÀ» À¯ÁöÇÏ¿© ¿¡³ÊÁö¸¦ Àü´ÞÇÏ´Â µ¿½Ã¿¡ ·Ñ·¯°¡¸é¼­ ¸ðµå »çÀ̸¦ ÀüȯÇÒ ¼ö ÀÖµµ·Ï ÇØÁ¦ÇÒ ¼ö ÀÖ´Ù.

½ÃÆ®ÀÇ ³Ã°¢ ºÎºÐ¿¡´Â ÈξÀ ´õ ¾ãÀº Åõ¸í ½Ç¸®ÄÜ ÃþÀ¸·Î µ¤ÀÎ ÃʹÚÇü Àº¸·ÀÌ ÀÖÀ¸¸ç, ÇÔ²² °Å¿ïó·³ ÅÂ¾ç ±¤¼±À» ¹Ý»çÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹°ÁúÀÇ °íÀ¯ÇÑ Æ¯¼ºÀº ¶ÇÇÑ ¿¡³ÊÁö¸¦ Á߰Ÿ® Àû¿Ü¼±À¸·Î º¯È¯ÇÏ¿© ¹æÃâÇÑ´Ù. Á߰Ÿ® Àû¿Ü¼±Àº Áö±¸ ´ë±âÀÇ °¡½º¿Í »óÈ£ ÀÛ¿ëÇÏÁö ¾Ê°í ½±°Ô ¿ìÁÖ °ø°£À¸·Î Àü´ÞµÈ´Ù.

³¯¾¾ º¯È­·Î ÀÎÇØ ³­¹æÀÌ ÇÊ¿äÇϸé ÀüÇÏ°¡ ¹æÃâµÇ°í ·Ñ·¯°¡ Æ®·¢À» µû¶ó ½ÃÆ®¸¦ ´ç±ä´Ù. ÀÌ·¸°Ô ÇÏ¸é ½ÃÆ®ÀÇ ³Ã°¢ ¹Ý»ç Àý¹ÝÀÌ ¿­ Èí¼ö Àý¹ÝÀ¸·Î ¹Ù²ï´Ù.

°Ç¹° ÇÏ´ÜÀ» °¡¿­Çϱâ À§ÇØ ¿£Áö´Ï¾îµéÀº ¾Æ¿¬-±¸¸® ³ª³ë ÀÔÀÚ ÃþÀ¸·Î µ¤ÀÎ ÃʹÚÇü ±¸¸® ÃþÀ» »ç¿ëÇß´Ù. ³ª³ë ÀÔÀڴ ƯÁ¤ Å©±âÀÌ°í ÀÏÁ¤ÇÑ °Å¸®¸¦ µÎ°í Àֱ⠶§¹®¿¡ Ç¥¸é¿¡ ºûÀ» °¡µÎ´Â ¹æ½ÄÀ¸·Î ±× ¾Æ·¡¿¡ ÀÖ´Â ±¸¸®¿Í »óÈ£ ÀÛ¿ëÇÏ¿© ¹°ÁúÀÌ ÇÞºû ¿­ÀÇ 93% ÀÌ»óÀ» Èí¼öÇÒ ¼ö ÀÖµµ·Ï ÇÑ´Ù.

µàÅ© ´ëÇб³ ¿¬±¸ÆÀÀº ÀÌ ÀåÄ¡¸¦ ±âÁ¸ HVAC ½Ã½ºÅÛÀ» ¿ÏÀüÈ÷ ±³Ã¼ÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó Çâ»ó½Ãų ¼öÀÖ´Â °ÍÀ¸·Î Àü¸ÁÇÏ°í ÀÖ´Ù. °Ç¹°À» Á÷Á¢ ³­¹æ ¹× ³Ã°¢ÇÏ´Â ´ë½Å ¿£Áö´Ï¾î´Â ¹° ÆгÎÀ» »ç¿ëÇÏ¿© ¿Â¼ö ¶Ç´Â ³Ã¼ö¸¦ È÷Æ® ÆßÇÁ ¶Ç´Â º¸ÀÏ·¯ ½Ã½ºÅÛÀ¸·Î °¡Á®¿Ã ¼ö ÀÖ´Ù. Ãß°¡ÀûÀÎ ¿£Áö´Ï¾î¸µ ±â¼úÀ» È°¿ëÇÏ¸é »ç¿ëÇÏ¸é º®¿¡µµ »ç¿ëÇÒ ¼ö ÀÖ¾î ÀÏÁ¾ÀÇ Àüȯ °¡´ÉÇÑ °Ç¹° ¿ÜÇǸ¦ Çü¼ºÇÒ ¼ö ÀÖ´Ù.

¾ÕÀ¸·Î ¿¬±¸ ÆÀÀº À̸¦ ÇÁ·ÎÅäŸÀÔ¿¡¼­ Á¦Á¶¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ½Ã½ºÅÛÀ¸·Î ¹ßÀü½ÃÅ°·Á°í ÇÑ´Ù. ¿À´Ã³¯ ¿òÁ÷ÀÌ´Â ºÎÇ°ÀÇ Àå±âÀûÀÎ ¸¶¸ð¿Í Ư¼ö Àç·áÀÇ ºñ¿ë¿¡ ´ëÇÑ ¿ì·Á°¡ ÀÖ´Ù. ¿¬±¸ ÆÀÀº Àú°¡ ¾Ë·ç¹Ì´½ ÀÌÀºÀ» ´ëüÇÒ ¼ö ÀÖ´ÂÁö °ËÅäÇÒ °ÍÀÌ°í ±â°èÀûÀÌ ¾Æ´Ñ È­ÇÐÀûÀ¸·Î ¸ðµå¸¦ ÀüȯÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹öÀüÀ» ¿¬±¸ÇÏ°í ÀÖ´Ù.

¸¹Àº Àå¾Ö¿¡µµ ºÒ±¸ÇÏ°í ¿¬±¸ ÆÀÀº ÀÌ ±â¼úÀÌ ¹Ì·¡¿¡ ¿¡³ÊÁö¸¦ ´ëÆø Àý°¨ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¹Ï°í ÀÖ´Ù. À̵éÀº ÀÌ ±â¼úÀ» Àû¿ëÇÒ ÀÌ»óÀûÀÎ Áö¿ªÀ» ¼±ÅÃÇϱâ À§ÇØ ÀÌ¹Ì ÇÑ ±â¾÷°ú Çù·ÂÇÏ°í ÀÖ´Ù.

¹Ì±¹À» ºñ·ÔÇÑ »ó´ç ¼öÀÇ ¼±Áø±¹µéÀÌ º½¿¡¼­ °Ü¿ï±îÁö °ÅÀÇ ¸ðµç ±âÈÄ´ë¿¡ Àû¿ëµÇ±â ¶§¹®¿¡ ½Ã±â¿¡ ¸Â´Â ³Ã³­¹æÀÌ ¸ðµÎ ÇÊ¿äÇÏ´Ù. µû¶ó¼­ ÀÌ »õ·Î¿î µà¾ó ¸ðµå ¹ß¸íÀÌ ÀåÁ¡Àº Àü Áö±¸ÀûÀ¸·Î ȯ°æ¿¡ ¸Å¿ì Àǹ̽ÉÀåÇÒ °ÍÀÌ ºÐ¸íÇÏ´Ù.

- Nature Communications, November 30, 2020, ¡°Integration of Daytime Radiative Cooling and Solar Heating for Year-Round Energy Saving in Buildings,¡± by Xiuqiang Li, et al.  © 2020 Springer Nature Limited.  All rights reserved.

To view or purchase this article, please visit:
https://www.nature.com/articles/s41467-020-19790-x
Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings chr(124)_pipe Nature Communications