[RH] Àΰ£ ÇൿÀ» ¼³¸íÇÏ´Â ¼öÇÐÀû ¸ðµ¨
Ç×°ø±Ç ¿¹¾à, ÀÚµ¿Â÷ ±¸ÀÔ, »õ ¾ÆÆÄÆ®¸¦ ãÀ» ¶§ ¿ì¸®´Â Ç×»ó °°Àº Áú¹®À» ÇÑ´Ù. ¡°ÇÑÂü ¶ß°Å¿ï ¶§ (´õ ¿À¸£±â Àü¿¡) ¹Þ¾Æµé¿©¾ß Çմϱî? ¾Æ´Ï¸é ´õ ³ªÀº Á¦¾ÈÀÌ ³ª¿Ã .. |
Whether we¡¯re talking about booking flight tickets, buying a car or finding a new apartment, we always ask ourselves the same question: ¡°Should I strike while the iron¡¯s hot, or wait until a better offer comes along?¡± People often find it difficult to make decisions when alternatives are presented sequentially rather than simultaneously. This becomes even more difficult when time is limited and an offer that you turn down now may no longer be available later.
Until now, the way we behave in such situations has never been thoroughly examined. But new research published in the Proceedings of the National Academy of Sciences involved numerous experiments designed to investigate this issue. Using the results, the researchers then developed a simple mathematical model for the strategy that people can use when they make decisions.
Notably, it is easy, using a computer, to find the best possible process for making decisions of this type. However, the human brain is not capable of carrying out the complex calculations that are required, so humans use a rather simplified strategy.
The researchers simulated purchasing situations with up to 200 participants in each test, in order to find out what strategies people actually use. In one test, the participants were told to try to get a flight ticket as cheaply as possible — they were given 10 offers one after the other in which the price fluctuated; meanwhile, the fictional departure date was getting nearer and nearer. In another test, people had to get the best possible deal on products such as groceries or kitchen appliances, with the fluctuating prices taken from an online shop.
The evaluation of the experiments confirmed that the test participants did not use the optimal, yet complex, strategy calculated by the computer. Instead, they used a ¡°linear threshold model¡±: ¡°The price that I am prepared to pay increases every day by the same amount. That means, ¡°the further along I am in the process, the higher the price I am willing to accept.¡±
This principle can be applied not only to purchasing decisions but also situations such as choice of an employer or a life partner: ¡°At the beginning perhaps my standards are high. But over time they may lower so that in the end I may settle for someone I would have rejected in the beginning.¡±
The researchers analyzed the experimental data and developed a mathematical model that describes human behavior in various scenarios. That helps people to better understand decision-making. The model also allows people to predict the circumstances in which we tend to buy a product too early - or when we delay too long and then have to take whatever is left in the end.
The researchers think these findings could help people make difficult decisions. In the current digital world, the amount of information available for decision-making can be overwhelming. This research provides a starting point for a better understanding of when people succeed or fail in such tasks. That could enable people to structure decision-making problems, for example in online shopping, in such a way that people are supported in navigating the flood of data.
References
Proceedings of the National Academy of Sciences, June 9, 2020, ¡°A Linear Threshold Model for Optimal Stopping Behavior,¡± by Christiane Baumann, et al. © 2020 National Academy of Sciences. All right reserved.
To view or purchase this article, please visit:
https://www.pnas.org/content/117/23/12750
ÃֽŠ¿¬±¸ °á°úµéÀ» ¡®Á¶Á÷°ú °³ÀÎÀÇ ¼º°ú¡¯¸¦ Çâ»ó½ÃÅ°±â À§ÇØ ¾î¶»°Ô È°¿ëÇÒ ¼ö ÀÖÀ»±î? ¸®¼Ä¡ ±â°ü°ú ¿¬±¸¼Ò¿¡¼ Á¦¾ÈÇÏ´Â ÇÏÀ̶óÀÌÆ®(Highlight)¿Í ÇÙ½É ¾ÆÀ̵ð¾î(Ideas)¸¦ ¼Ò°³Çص帳´Ï´Ù.
* *
Ç×°ø±Ç ¿¹¾à, ÀÚµ¿Â÷ ±¸ÀÔ, »õ ¾ÆÆÄÆ®¸¦ ãÀ» ¶§ ¿ì¸®´Â Ç×»ó °°Àº Áú¹®À» ÇÑ´Ù.
¡°ÇÑÂü ¶ß°Å¿ï ¶§ (´õ ¿À¸£±â Àü¿¡) ¹Þ¾Æµé¿©¾ß Çմϱî? ¾Æ´Ï¸é ´õ ³ªÀº Á¦¾ÈÀÌ ³ª¿Ã ¶§±îÁö ±â´Ù·Á¾ß Çմϱî?¡±
»ç¶÷µéÀº Á¾Á¾ ´ë¾ÈÀÌ µ¿½Ã(simultaneously)º¸´Ù´Â ¿¬¼ÓÀûÀ¸·Î Á¦½ÃµÉ ¶§ °áÁ¤À» ³»¸®±â°¡ ¾î·Æ´Ù´Â °ÍÀ» ¾Ë°Ô µÈ´Ù. ½Ã°£ÀÌ Á¦ÇѵǾî ÀÖ°í Áö±Ý °ÅÀýÇÑ Á¦¾ÈÀÌ ³ªÁß¿¡ ´õ ÀÌ»ó Á¦°øµÇÁö ¾ÊÀ» ¶§´Â ÀÇ»ç°áÁ¤ÀÌ ´õ¿í ¾î·Á¿öÁø´Ù.
Áö±Ý±îÁö ÀÌ·¯ÇÑ »óȲ¿¡¼ ¿ì¸®°¡ ÇൿÇÏ´Â ¹æ½Ä¿¡ ´ëÇؼ´Â öÀúÈ÷ Á¶»çµÈ ÀûÀÌ ¾ø´Ù. ±×·¯³ª Àü¹Ì °úÇоÆÄ«µ¥¹Ì(the National Academy of Scences) ȸº¸¿¡ ¹ßÇ¥µÈ »õ·Î¿î ¿¬±¸¿¡´Â ÀÌ ¹®Á¦¸¦ Á¶»çÇϱâ À§ÇØ °í¾ÈµÈ ¼ö¸¹Àº ½ÇÇèÀÌ ¼Ò°³µÇ¾ú´Ù. ÀÌ °á°ú¸¦ »ç¿ëÇÏ¿© ¿¬±¸ÀÚµéÀº »ç¶÷µéÀÌ ÀÇ»ç °áÁ¤À» ³»¸± ¶§ »ç¿ëÇÒ ¼ö ÀÖ´Â Àü·«¿¡ ´ëÇÑ °£´ÜÇÑ ¼öÇÐ ¸ðµ¨À» °³¹ßÇß´Ù.
ƯÈ÷ ÄÄÇ»Å͸¦ »ç¿ëÇϸé ÀÌ·¯ÇÑ À¯ÇüÀÇ °áÁ¤À» ³»¸®´Â µ¥ °¡Àå ÀûÇÕÇÑ ÇÁ·Î¼¼½º¸¦ ½±°Ô ãÀ» ¼ö ÀÖ´Ù. ±×·¯³ª Àΰ£ÀÇ µÎ³ú´Â ÇÊ¿äÇÑ º¹ÀâÇÑ °è»êÀ» ¼öÇàÇÒ ¼ö ¾øÀ¸¹Ç·Î Àΰ£Àº ´Ù¼Ò ´Ü¼øÈµÈ Àü·«À» »ç¿ëÇÑ´Ù.
¿¬±¸ÁøÀº »ç¶÷µéÀÌ ½ÇÁ¦·Î ¾î¶² Àü·«À» »ç¿ëÇÏ´ÂÁö ¾Ë¾Æº¸±â À§ÇØ °¢ Å×½ºÆ®¿¡¼ ÃÖ´ë 200¸íÀÇ Âü°¡ÀÚ¸¦ ´ë»óÀ¸·Î ±¸¸Å »óȲÀ» ½Ã¹Ä·¹ÀÌ¼Ç Çß´Ù. ÇÑ Å×½ºÆ®¿¡¼ Âü°¡ÀÚµéÀº °¡´ÉÇÑ ÇÑ Àú·ÅÇÏ°Ô Ç×°ø±ÇÀ» ±¸Ç϶ó´Â Áö½Ã¸¦ ¹Þ¾Ò´Ù. À̵éÀº °¡°ÝÀÌ º¯µ¿ÇÏ´Â 10°³ÀÇ Á¦¾ÈÀ» Â÷·Ê·Î ¹Þ¾Ò´Ù. ÇÑÆí °¡»óÀÇ Ãâ¹ßÀÏÀº Á¡Á¡ °¡±î¿öÁö°í ÀÖ¾ú´Ù. ¶Ç ´Ù¸¥ Å×½ºÆ®¿¡¼ »ç¶÷µéÀº ½Ä·áÇ°À̳ª ÁÖ¹æ °¡Àü°ú °°Àº Á¦Ç°¿¡ ´ëÇØ °¡´ÉÇÑ ÇÑ ÃÖ»óÀÇ °Å·¡¸¦ ÇØ¾ß ÇßÀ¸¸ç, ¿Â¶óÀÎ »óÁ¡À¸·ÎºÎÅÍÀÇ º¯µ¿ °¡°Ý ÀÚ·á°¡ ÁÖ¾îÁ³´Ù.
½ÇÇè Æò°¡´Â Å×½ºÆ® Âü°¡ÀÚµéÀÌ ÄÄÇ»ÅÍ·Î °è»êµÇ´Â ¡®ÃÖÀûÀÌÁö¸¸ ´Ù¼Ò º¹ÀâÇÑ¡¯ Àü·«À» »ç¿ëÇÏÁö ¾Ê¾ÒÀ½À» È®ÀÎÇß´Ù. ´ë½Å ±×µéÀº ¡®¼±Çü ÀÓ°èÄ¡ ¸ðµ¨(linear threshold model)¡¯À» »ç¿ëÇß´Ù.
¡°³»°¡ ÁöºÒÇÒ Áغñ°¡ µÈ °¡°ÝÀº ¸ÅÀÏ ¶È°°Àº ±Ý¾×¸¸Å ¿À¸¥´Ù. Áï, ³»°¡ ½Ã°£À» ´õ ²ø¼ö·Ï, ¹Þ¾Æµé¿©¾ß ÇÏ´Â (ÁöºÒÇØ¾ß ÇÏ´Â) °¡°ÝÀº ´õ ³ô¾ÆÁø´Ù.¡±
ÀÌ ¿øÄ¢Àº ±¸¸Å°áÁ¤ »Ó¸¸ ¾Æ´Ï¶ó °í¿ëÁÖ ¶Ç´Â ¹Ý·ÁÀÚÀÇ ¼±Åðú °°Àº »óȲ¿¡µµ Àû¿ëµÉ ¼ö ÀÖ´Ù.
¡°Ã³À½¿¡ ¾Æ¸¶µµ ³» ±âÁØÀº ³ô´Ù. ±×·¯³ª ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ³» ±âÁØÀÌ ´õ ³·¾ÆÁú ¼ö ÀÖ°í °á±¹ ³ª´Â óÀ½¿¡ ³»°¡ °ÅÀýÇßÀ» ´©±º°¡·Î ¸¸Á·ÇØ¾ß ÇÒ ¼ö ÀÖ´Ù.¡±
¿¬±¸¿øµéÀº ½ÇÇè µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í ´Ù¾çÇÑ ½Ã³ª¸®¿À¿¡¼ Àΰ£ ÇൿÀ» ¼³¸íÇÏ´Â ¼öÇÐÀû ¸ðµ¨À» °³¹ßÇß´Ù. ÀÌ ¸ðµ¨Àº »ç¶÷µéÀÌ ÀÇ»ç°áÁ¤À» ´õ Àß ÀÌÇØÇÏ´Â µ¥ µµ¿òÀÌ µÈ´Ù. ¶ÇÇÑ ÀÌ ¸ðµ¨À» ÅëÇØ »ç¶÷µéÀº ¿ì¸®°¡ Á¦Ç°À» ³Ê¹« ÀÏÂï ±¸¸ÅÇÏ´Â °æÇâÀÌ ÀÖ´Â »óȲ ¶Ç´Â ³Ê¹« ¿À·¡ Áö¿¬µÈ ÈÄ °á±¹ ³²Àº °ÍÀÌ ¹«¾ùÀÌµç ¹Þ¾Æµé¿©¾ß ÇÏ´Â »óȲÀ» ¿¹ÃøÇÒ ¼ö ÀÖ´Ù.
¿¬±¸¿øµéÀº ÀÌ·¯ÇÑ ¹ß°ßÀÌ »ç¶÷µéÀÌ ¾î·Á¿î °áÁ¤À» ³»¸®´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ´Ù°í »ý°¢ÇÏ°í ÀÖ´Ù. ÇöÀç µðÁöÅÐ ¼¼°è¿¡¼ ÀÇ»ç°áÁ¤¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â Á¤º¸ÀÇ ¾çÀº ¾ÐµµÀûÀÏ ¼ö ÀÖ´Ù. ÀÌ ¿¬±¸´Â »ç¶÷µéÀÌ ÀÇ»ç°áÁ¤¿¡¼ ¼º°øÇϰųª ½ÇÆÐÇÏ´Â ½Ã±â¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ´Â Ãâ¹ßÁ¡À» Á¦°øÇÑ´Ù. À̸¦ ÅëÇØ »ç¶÷µéÀº ÀÇ»ç°áÁ¤ ¹®Á¦¸¦ ±¸Á¶ÈÇÒ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î, ¿Â¶óÀÎ ¼îÇο¡¼ ±×·¯ÇÑ ¹æ½ÄÀ¸·Î »ç¶÷µéÀº µ¥ÀÌÅÍ È«¼ö ¼Ó¿¡¼ Ž»öÀ» ÇÒ ¼ö ÀÖµµ·Ï Áö¿ø¹ÞÀ» ¼ö ÀÖ´Ù.
- Proceedings of the National Academy of Sciences, June 9, 2020, ¡°A Linear Threshold Model for Optimal Stopping Behavior,¡± by Christiane Baumann, et al. © 2020 National Academy of Sciences. All right reserved.
To view or purchase this article, please visit:
https://www.pnas.org/content/117/23/12750