¸ñ·Ï

Home

åǥÁö

¹«ÇÑÇÑ ¿ø¼þÀÌÀÇ ½ÅÈ­: ¹«ÀÛÀ§¼ºÀº ¿Ö ¼ÎÀͽºÇǾ ¾µ ¼ö ¾ø´Â°¡

Àΰ£Àº Á¾Á¾ ¹«ÀÛÀ§¼º(randomness)ÀÇ Èû¿¡ ¸Å·áµÈ´Ù. ¿î¿¡ ÀÇÁ¸ÇÑ °ÔÀÓºÎÅÍ »ý¸íÀÇ ±â¿ø(origin of life)¿¡ ´ëÇÑ À̷бîÁö, ¿ì¿¬Àº ¶§¶§·Î º¹ÀâÇÑ °á°ú¸¦ âÁ¶ÇÒ ¼ö ÀÖ..




The Myth of Infinite Monkeys: Why Randomness Can¡¯t Write Shakespeare

Chance, Life, and Shakespeare
Humans are often fascinated by the power of randomness. From games of chance to theories about the origin of life, randomness is frequently portrayed as a mysterious force capable of producing complex outcomes. One famous metaphor representing this belief is the Infinite Monkey Theorem.

This theorem posits that a monkey randomly typing for an infinite amount of time could eventually produce the complete works of William Shakespeare.

While intriguing, this concept is widely misunderstood in discussions of probability and the origin of life. It risks oversimplifying complex processes into mere chance. Yet, in complex systems, outcomes do not emerge from simple trials; rather, they require precise conditions and mechanisms.

The Origin of Life: Not a Simple Game of Dice
The formation of the first living organism would require at least 400 proteins, each composed of approximately 200 amino acids.

These proteins would not only need to be precisely arranged but must also interact simultaneously in space and time with other complex components such as lipids, carbohydrates, and nucleotides.

To suggest such a system emerged purely by chance is a statistically implausible claim.

For this reason, critics often use analogies like the Infinite Monkey Theorem to illustrate just how unlikely this is.

The comparison underscores that the probability of life emerging by accident is about as likely as a monkey randomly typing out Hamlet without understanding language.

The origin of life involves a complex interplay of physical, chemical, and biological processes that cannot be adequately captured by mathematical probability alone. Life, as we know it, is a functional, self-replicating system that cannot arise simply from the accumulation of random molecules.

Infinite Monkeys, Infinite Time: Theory Meets Reality
The Infinite Monkey Theorem relies on two unrealistic assumptions: infinite time and an infinite number of monkeys.

These assumptions are incompatible with the constraints of a finite universe.

A recent study published in the December 2024 issue of the journal *Franklin Open* tackled this question by evaluating the theorem under finite conditions. Stephen Woodcock of the University of Technology Sydney and Jay Falletta of the University of Florida conducted a mathematical analysis based on realistic cosmological parameters.

Their work numerically assessed the flaws in the theorem and showed how its probabilistic assumptions diverge from reality.

Instead of assuming infinite monkeys and time, the researchers used feasible values for time and population based on what the universe can actually accommodate. Their study moves beyond mathematical curiosity and highlights how scientific reasoning must reflect practical constraints.

A Realistic Simulation: Monkeys and the Constraints of Typing
Rather than engage in abstraction, the researchers constructed a practical scenario. They assumed a keyboard with 30 keys (letters and punctuation) and a global population of approximately 200,000 chimpanzees, each typing one keystroke per second until the end of the universe—estimated at 10^100 years from now.

Even under these conditions, the results were striking. A single chimpanzee had only about a 5% chance of typing the seven-letter word ¡°bananas¡± within its lifetime. In contrast, even with 200,000 chimpanzees working simultaneously, the likelihood of reproducing Shakespeare¡¯s 884,000-word corpus before the end of the universe was essentially zero.

These results go beyond theoretical validation; they demonstrate how real-world resource limits drastically reduce statistical feasibility. The simulation also reinforces that complex systems do not arise through simple repetition.

The Limits of Biological Randomness
The implications of this study extend beyond literature into biology. The notion that randomness alone could generate complex and functional biological systems is deeply questionable.

Life on Earth began shortly after the planet cooled below sterilization temperatures—a timeframe far too short for random molecular combinations to feasibly result in life.

Moreover, no known random generation mechanism akin to an ¡°infinite monkey generator¡± has ever been identified in early Earth conditions. This indicates that randomness alone is insufficient to explain life¡¯s emergence.

Biological complexity encompasses adaptive functionality, biochemical interactions, and systems for storing and transmitting information. These features cannot be explained by random molecular assembly alone; they must be considered within a broader framework of external conditions and internal system interactions.

Pop Culture and the Misconception of Probability
Popular culture has embraced the Infinite Monkey Theorem as a whimsical symbol of randomness. It has appeared in *The Simpsons*, *The Hitchhiker¡¯s Guide to the Galaxy*, and TikTok videos, often used to generate humor or irony.

However, such portrayals may mislead audiences about the nature of probability. While randomness can yield surprising outcomes, it does not make everything possible.

Outcomes that exceed the boundaries of randomness require structured processes or the intervention of intelligence. Probabilistic thinking, when divorced from context, is prone to exaggeration and can lead to unrealistic expectations.

Though randomness in pop culture is often framed playfully, scientific inquiry demands clearly defined conditions, mechanisms, and environments. As such, statistical novelty should be viewed critically, and scientific thinking must prioritize assumptions and limitations over mere numerical fascination.

Understanding the Power and Limits of Randomness
The Infinite Monkey Theorem is not a magical showcase of probability theory but a cautionary example of its misapplication.

Although mathematically conceivable, the theorem loses meaning within the physical and temporal realities of our finite universe. While some outcomes may be theoretically possible, they are practically unattainable.

In both cosmology and biology, distinguishing between mathematical potential and real-world feasibility is crucial. Blind faith in randomness must be tempered by considerations of scale, limitation, and context.

Whether it is the writing of Shakespeare or the emergence of a cell, the universe operates on the laws of reality, not hypothetical mathematics. Probability is powerful, but it is not omnipotent. Reflection on probability helps us understand the boundary between the possible and the impossible—but it is no master key.

(Source – FRANKLIN OPEN, December 2024, Vol. 9, ¡°A Numerical Evaluation of the Finite Monkeys Theorem,¡± by Stephen Woodcock and Jay Falletta. © Elsevier B.V. All rights reserved.)





¹«ÇÑÇÑ ¿ø¼þÀÌÀÇ ½ÅÈ­: ¹«ÀÛÀ§¼ºÀº ¿Ö ¼ÎÀͽºÇǾ ¾µ ¼ö ¾ø´Â°¡

¿ì¿¬, »ý¸í, ±×¸®°í ¼ÎÀͽºÇǾî
Àΰ£Àº Á¾Á¾ ¹«ÀÛÀ§¼º(randomness)ÀÇ Èû¿¡ ¸Å·áµÈ´Ù. ¿î¿¡ ÀÇÁ¸ÇÑ °ÔÀÓºÎÅÍ »ý¸íÀÇ ±â¿ø(origin of life)¿¡ ´ëÇÑ À̷бîÁö, ¿ì¿¬Àº ¶§¶§·Î º¹ÀâÇÑ °á°ú¸¦ âÁ¶ÇÒ ¼ö ÀÖ´Â ½ÅºñÇÑ ÈûÀ¸·Î ¹¦»çµÈ´Ù. ÀÌ·¯ÇÑ ¹ÏÀ½À» ´ëÇ¥ÇÏ´Â À¯¸íÇÑ ÀºÀ¯ Áß Çϳª°¡ ¹Ù·Î '¹«ÇÑÇÑ ¿ø¼þÀÌ Á¤¸®(Infinite Monkey Theorem)'ÀÌ´Ù.

ÀÌ Á¤¸®´Â ¹«ÇÑÇÑ ½Ã°£(infinite time) µ¿¾È ¹«ÀÛÀ§·Î ŸÀÚ¸¦ Ä¡´Â ¿ø¼þÀ̰¡ °á±¹ ¼ÎÀͽºÇǾî(William Shakespeare) ÀüÁýÀ» ¿Ï¼ºÇÒ ¼ö ÀÖ´Ù´Â ÀÌ·ÐÀÌ´Ù.

ÀÌ °³³äÀº Èï¹Ì·ÓÁö¸¸, È®·ü(probability)°ú »ý¸íÀÇ ±â¿ø¿¡ ´ëÇØ ±¤¹üÀ§ÇÏ°Ô ¿ÀÇØµÇ°í ÀÖ´Ù. ÀÌ·¯ÇÑ ¼­¼úÀº º¹ÀâÇÑ °úÁ¤À» ´Ü¼øÇÑ ¿ì¿¬¿¡ ȯ¿ø½ÃŰ´Â ¿À·ù¸¦ ¹üÇϱ⠽±´Ù. ±×·¯³ª º¹Àâ°è¿¡¼­ÀÇ °á°ú´Â ´Ü¼øÇÑ ½Ãµµ¸¸À¸·Î µµÃâµÇÁö ¾ÊÀ¸¸ç, ½ÇÁ¦·Î´Â Á¤±³ÇÑ Á¶°Ç°ú ¸ÞÄ¿´ÏÁòÀÌ ÇʼöÀûÀÌ´Ù.

»ý¸íÀÇ ±â¿ø: ´Ü¼øÇÑ ÁÖ»çÀ§ ³îÀ̰¡ ¾Æ´Ï´Ù
ÃÖÃÊÀÇ »ý¸íü°¡ Çü¼ºµÇ±â À§Çؼ­´Â ÃÖ¼ÒÇÑ 400°³ÀÇ ´Ü¹éÁú(protein)ÀÌ ÇÊ¿äÇϸç, °¢°¢Àº ¾à 200°³ÀÇ ¾Æ¹Ì³ë»ê(amino acid)À¸·Î ±¸¼ºµÇ¾î¾ß ÇÑ´Ù.

ÀÌ ´Ü¹éÁúµéÀº Á¤È®È÷ Á¶ÇյǾî¾ß ÇÒ »Ó ¾Æ´Ï¶ó, ÁöÁú(lipid), ź¼öÈ­¹°(carbohydrate), ´ºÅ¬·¹¿ÀŸÀ̵å(nucleotide)¿Í °°Àº ´Ù¸¥ º¹ÀâÇÑ ±¸¼º ¿ä¼Òµé°ú ½Ã°£°ú °ø°£»óÀ¸·Î µ¿½Ã¿¡ Á¶È­¸¦ ÀÌ·ç¾î¾ß ÇÑ´Ù.

ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ¼øÀüÈ÷ ¿ì¿¬¿¡ ÀÇÇØ Çü¼ºµÈ´Ù´Â ¹ÏÀ½Àº È®·üÀûÀ¸·Î ºñÇö½ÇÀûÀÎ ÁÖÀåÀÌ´Ù.

ÀÌ·¯ÇÑ ÀÌÀ¯·Î ºñÆò°¡µéÀº Á¾Á¾ '¹«ÇÑÇÑ ¿ø¼þÀÌ Á¤¸®'¿Í °°Àº À¯Ã߸¦ ÅëÇØ ÀÌ·¯ÇÑ ÀÏÀÌ ¾ó¸¶³ª ºÒ°¡´É¿¡ °¡±î¿îÁö¸¦ ¼³¸íÇÑ´Ù.

ÀÌ ºñÀ¯´Â ¾ð¾î¸¦ ÀÌÇØÇÏÁö ¸øÇÏ´Â ¿ø¼þÀ̰¡ ÇØ¸á¸´(Hamlet)À» ¹«ÀÛÀ§·Î ¾µ È®·ü¸¸Å­, »ý¸íü°¡ ¿ì¿¬È÷ Çü¼ºµÉ °¡´É¼ºÀÌ ³·´Ù´Â Á¡À» °­Á¶ÇÑ´Ù.

»ý¸íÀÇ ±â¿øÀº ¹°¸®Àû, È­ÇÐÀû, »ý¹°ÇÐÀû °úÁ¤ÀÇ º¹ÇÕüÀ̸ç, ÀÌ´Â ´Ü¼øÇÑ ¼öÇÐÀû È®·ü °è»êÀ¸·Î ¼³¸íµÇ±â ¾î·Á¿î ¿µ¿ªÀÌ´Ù. ½ÇÁ¦ »ý¸íÀº ±â´ÉÀû ÀûÀÀ¼º°ú ÀÚ°¡º¹Á¦¸¦ °®Ãá ½Ã½ºÅÛÀ¸·Î, ´Ü¼øÈ÷ ºÐÀÚ°¡ ¸ð¿´´Ù°í ÇØ¼­ »ý°Ü³ª´Â °ÍÀÌ ¾Æ´Ï´Ù.

¹«ÇÑÇÑ ¿ø¼þÀÌ, ¹«ÇÑÇÑ ½Ã°£: À̷аú Çö½ÇÀÇ °£±Ø
¹«ÇÑÇÑ ¿ø¼þÀÌ Á¤¸®´Â µÎ °¡Áö ºñÇö½ÇÀûÀÎ ÀüÁ¦¿¡ ±â¹ÝÇÑ´Ù:

¹«ÇÑÇÑ ½Ã°£°ú ¹«ÇÑÇÑ ¼öÀÇ ¿ø¼þÀÌ.

±×·¯³ª ÀÌ·¯ÇÑ Á¶°ÇÀº À¯ÇÑÇÑ ¿ìÁÖ¶ó´Â ¿ì¸®ÀÇ Çö½Ç°ú´Â ÀÏÄ¡ÇÏÁö ¾Ê´Â´Ù.

ÃÖ±Ù ±¹Á¦ ÇмúÁö ¡ºÇÁ·©Å¬¸° ¿ÀÇÂ(Franklin Open)¡» 2024³â 12¿ùÈ£¿¡ ¹ßÇ¥µÈ ÇÑ ¿¬±¸´Â ÀÌ ¹®Á¦¿¡ ÁÖ¸ñÇÏ¿©, ¹«ÇÑÇÏÁö ¾ÊÀº Á¶°Ç ¼Ó¿¡¼­ ÀÌ °¡¼³À» ½ÇÇèÀûÀ¸·Î Æò°¡Çß´Ù. È£ÁÖ ½Ãµå´Ï °ø°ú´ëÇб³(University of Technology Sydney)ÀÇ ÀÀ¿ë¼öÇÐÀÚ ½ºÆ¼ºì ¿ìµåÄÛ(Stephen Woodcock)°ú ¹Ì±¹ Ç÷θ®´Ù ´ëÇб³(University of Florida)ÀÇ ¿¬±¸ÀÚ Á¦ÀÌ ÆÈ·¹Å¸(Jay Falletta)´Â Çö½ÇÀûÀÎ ¿ìÁÖ Á¶°ÇÀ» ±â¹ÝÀ¸·Î ÀÌ ÀÌ·ÐÀ» ¼öÇÐÀûÀ¸·Î ºÐ¼®Çß´Ù.

À̵éÀÇ ºÐ¼®Àº ÀÌ·ÐÀÇ ÇãÁ¡À» ¼öÄ¡ÀûÀ¸·Î °ËÅäÇϰí, È®·üÀû Á¶°ÇÀÌ Çö½Ç°ú ¾ó¸¶³ª ±«¸®µÇ¾î ÀÖ´ÂÁö¸¦ º¸¿©ÁØ´Ù.

À̵éÀº ¹«ÇÑÇÑ ½Ã°£°ú ÀοøÀÌ ¾Æ´Ï¶ó, ½ÇÁ¦ ¿ìÁÖ¿¡¼­ °¡´ÉÇÑ ½Ã°£°ú Á¸ÀçÇÏ´Â »ý¸íü ¼ö¸¦ °¡Á¤ÇÏ¿© °á°ú¸¦ °è»êÇß´Ù. ÀÌ´Â ´ÜÁö ¼öÇÐÀû À¯Èñ¸¦ ³Ñ¾î¼­, °úÇÐÀû »ç°í°¡ ½ÇÁ¦Àû ÇѰ踦 ¾î¶»°Ô ¹Ý¿µÇØ¾ß ÇÏ´ÂÁö¸¦ Àϱú¿öÁØ´Ù.

Çö½ÇÀû ½Ã¹Ä·¹À̼Ç: Á¦¾à ¼ÓÀÇ ¿ø¼þÀÌ Å¸ÀÚ ½ÇÇè
¿¬±¸ÆÀÀº Ãß»óÀû ³íÀǸ¦ ³Ñ¾î ½ÇÁ¦ ½Ã³ª¸®¿À¸¦ ±¸¼ºÇß´Ù. Űº¸µå´Â 30°³ÀÇ Å°(¿µ¹®ÀÚ¿Í ÀÏ¹Ý ±¸µÎÁ¡ Æ÷ÇÔ)·Î ¼³Á¤µÇ¾ú°í, Àü ¼¼°è¿¡ Á¸ÀçÇÏ´Â ¾à 20¸¸ ¸¶¸®ÀÇ Ä§ÆÒÁö(chimpanzee)°¡ ¸ÅÃÊ 1Ÿ¾¿ ¿ìÁÖ°¡ ³¡³¯ ¶§±îÁö ÀÔ·ÂÇÏ´Â Á¶°ÇÀ» °¡Á¤Çß´Ù. ÀÌ ½ÃÁ¡Àº ¾à 10ÀÇ 100Á¦°ö³â ÈÄ·Î, 1 µÚ¿¡ 100°³ÀÇ 0ÀÌ ºÙ´Â ¼ýÀÚ´Ù.

ÀÌ Á¶°ÇÇÏ¿¡¼­µµ °á°ú´Â ³î¶ó¿ü´Ù. ´ÜÀÏ Ä§ÆÒÁö°¡ ÀÚ½ÅÀÇ ¼ö¸í µ¿¾È 'bananas'¶ó´Â 7±ÛÀÚÀÇ ´Ü¾î¸¦ ÀÔ·ÂÇÒ È®·üÀº ¾à 5%¿¡ ºÒ°úÇß´Ù. ¹Ý¸é, 20¸¸ ¸¶¸®ÀÇ Ä§ÆÒÁö°¡ µ¿½Ã¿¡ ÀÛ¾÷ÇÏ´õ¶óµµ, 88¸¸¿© ´Ü¾î·Î ±¸¼ºµÈ ¼ÎÀͽºÇǾî ÀüÁýÀ» ¿ìÁÖ°¡ ³¡³ª±â Àü±îÁö ¿Ï¼ºÇÒ È®·üÀº »ç½Ç»ó 0¿¡ ¼ö·ÅÇß´Ù.

ÀÌ °è»êÀº ´Ü¼øÇÑ ÀÌ·ÐÀÇ °ËÁõÀ» ³Ñ¾î¼­, Çö½ÇÀû ÀÚ¿øÀÇ ÇѰ谡 Åë°èÀû °¡´É¼º¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö¸¦ º¸¿©ÁØ´Ù. ¶ÇÇÑ ÀÌ ½Ã¹Ä·¹À̼ÇÀº º¹ÀâÇÑ ½Ã½ºÅÛÀÌ ´Ü¼ø ¹Ýº¹À¸·Î´Â »ý¼ºµÉ ¼ö ¾øÀ½À» °­Á¶ÇÑ´Ù.

»ý¹°ÇÐÀû ¹«ÀÛÀ§¼ºÀÇ ÇѰè
ÀÌ ¿¬±¸ÀÇ ÇÔÀÇ´Â ¹®ÇÐÀû ¿µ¿ªÀ» ³Ñ¾î »ý¹°ÇÐ(biology)¿¡µµ Àû¿ëµÈ´Ù. ¹«ÀÛÀ§¼º¸¸À¸·Î º¹ÀâÇÏ°í ±â´ÉÀûÀÎ »ý¸íü ½Ã½ºÅÛÀÌ ¸¸µé¾îÁú ¼ö ÀÖ´Ù´Â »ý°¢Àº Àǹ®À» Á¦±âÇÑ´Ù.

Áö±¸¿¡¼­ »ý¸íÀÌ ½ÃÀÛµÈ ½ÃÁ¡Àº Ç༺ÀÌ ¸ê±Õ ¿Âµµ ÀÌÇÏ·Î ½ÄÀº Á÷ÈÄ¿´À¸¸ç, ÀÌ ½Ã±â´Â ¹«ÀÛÀ§ ºÐÀÚ Á¶ÇÕÀ» ½ÃµµÇϱ⿡ ÃæºÐÇÑ ½Ã°£ÀÌ ¾Æ´Ï¾ú´Ù.

´õ±¸³ª, Ãʱâ Áö±¸ ȯ°æ¿¡¼­´Â ¡®¹«ÇÑÇÑ ¿ø¼þÀÌ »ý¼º±â¡¯¿¡ ÇØ´çÇÏ´Â ¹«ÀÛÀ§Àû »ý¼º ¸ÞÄ¿´ÏÁò(random generation mechanism)ÀÌ ¹ß°ßµÇÁö ¾Ê¾Ò´Ù. ÀÌ´Â ¹«ÀÛÀ§¼º¸¸À¸·Î »ý¸íÀÇ ±â¿øÀ» ¼³¸íÇϱ⿡´Â ±Ù°Å°¡ ºÎÁ·ÇÏ´Ù´Â Á¡À» ½Ã»çÇÑ´Ù.

»ý¹°ÇÐÀû º¹À⼺Àº ±â´ÉÀû ÀûÀÀ¼º, »ýÈ­ÇÐÀû »óÈ£ÀÛ¿ë, Á¤º¸ÀÇ ÀúÀå ¹× Àü´Þ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ´Ù. ÀÌ·¯ÇÑ Æ¯¼ºµéÀº ´Ü¼øÇÑ ºÐÀÚÀÇ ¹«ÀÛÀ§ Á¶ÇÕ¸¸À¸·Î´Â ¼³¸íµÉ ¼ö ¾øÀ¸¸ç, ¿ÜºÎ Á¶°Ç°ú ½Ã½ºÅÛ ³» »óÈ£ÀÛ¿ëÀ̶ó´Â °Å½ÃÀû Ʋ¿¡¼­ °í·ÁµÇ¾î¾ß ÇÑ´Ù.

´ëÁß¹®È­¿Í È®·üÀÇ ¿ÀÇØ
´ëÁß¹®È­(pop culture)´Â ¹«ÇÑÇÑ ¿ø¼þÀÌ Á¤¸®¸¦ À¯ÄèÇÑ ¿ì¿¬ÀÇ »ó¡À¸·Î Â÷¿ëÇØ¿Ô´Ù. ¡º½É½¼(The Simpsons)¡», ¡ºÀºÇϼö¸¦ ¿©ÇàÇÏ´Â È÷Ä¡ÇÏÀÌÄ¿(The Hitchhiker¡¯s Guide to the Galaxy)¡», ƽÅå(TikTok) ¿µ»ó µî¿¡¼­ ÀÌ °³³äÀº Á¾Á¾ À¯¸Ó¿Í ³î¶ó¿òÀÇ ¼ÒÀç°¡ µÈ´Ù.

±×·¯³ª À̵éÀº È®·ü °³³äÀ» ¿ÀÇØÇÏ°Ô ¸¸µå´Â Ãø¸éÀÌ ÀÖ´Ù. ¹«ÀÛÀ§¼ºÀº ³î¶ó¿î °á°ú¸¦ ³ºÀ» ¼ö´Â ÀÖÁö¸¸, ±×°ÍÀÌ ¸ðµç °ÍÀ» °¡´ÉÄÉ ÇÏÁö´Â ¾Ê´Â´Ù.

¹«ÀÛÀ§ÀÇ °æ°è¸¦ ³Ñ´Â °á°ú´Â ±¸Á¶È­µÈ °úÁ¤ ¶Ç´Â Áö¼º(intelligence)ÀÇ °³ÀÔÀÌ ÇÊ¿äÇÏ´Ù. È®·üÀû »ç°í´Â ¸Æ¶ôÀ» ¹þ¾î³¯ ¶§ °úÀåµÇ±â ½±°í, ÀÌ·Î ÀÎÇØ Çö½Ç°ú µ¿¶³¾îÁø ±â´ë¸¦ ³º´Â´Ù.

´ëÁß¹®È­¿¡¼­ÀÇ ¹«ÀÛÀ§¼ºÀº Á¾Á¾ Àç¹Ì³ª ¾ÆÀÌ·¯´Ï·Î Æ÷ÀåµÇÁö¸¸, ½ÇÁ¦ °úÇп¡¼­´Â Á¶°Ç°ú ȯ°æ, ¸ÞÄ¿´ÏÁòÀÌ ¸íÈ®È÷ ¼³Á¤µÈ ü°è ³»¿¡¼­ Àǹ̸¦ °¡Áø´Ù. µû¶ó¼­ Åë°èÀû À¯Èñ´Â °æ°èµÇ¾î¾ß Çϸç, °úÇÐÀû »ç°í´Â ¼öÄ¡ ±× ÀÚüº¸´Ù ÀüÁ¦¿Í ÇѰ踦 Áß½ÃÇØ¾ß ÇÑ´Ù.

¹«ÀÛÀ§¼ºÀÇ Èû°ú ÇѰ踦 ÀÌÇØÇ϶ó
¹«ÇÑÇÑ ¿ø¼þÀÌ Á¤¸®´Â È®·ü ÀÌ·Ð(probability theory)ÀÇ ¸¶¹ýÀÌ ¾Æ´Ï¶ó, ±× ³²¿ë¿¡ ´ëÇÑ °æ°íÀÌ´Ù.

¼öÇÐÀûÀ¸·Î´Â ÀÌ·ÐÀûÀ¸·Î °¡´ÉÇÏÁö¸¸, ¹°¸®ÀûÀÌ°í ½Ã°£ÀûÀÎ Çö½Ç ¼Ó¿¡¼­´Â ±× °¡´É¼ºÀÌ ¹«ÀǹÌÇØÁø´Ù. ¿ì¸®ÀÇ ¿ìÁÖ´Â À¯ÇÑÇϸç, ±× ¾È¿¡¼­ ¾î¶² °á°ú´Â ÀÌ·ÐÀûÀ¸·Î´Â °¡´ÉÇØµµ, ½ÇÁúÀûÀ¸·Î´Â ÀϾ ¼ö ¾ø´Ù.

¿ìÁÖ·Ð(cosmology)°ú »ý¹°ÇÐ ¸ðµÎ¿¡¼­ ÀÌ ±¸ºÐÀº Áß¿äÇÏ´Ù. ¹«ÀÛÀ§¼º¿¡ ´ëÇÑ ¸Í½ÅÀº °æ°èµÇ¾î¾ß Çϸç, ±Ô¸ð, Á¦¾à, ¸Æ¶ô¿¡ ´ëÇÑ °í·Á°¡ ÇÊ¿äÇÏ´Ù.

¼ÎÀͽºÇǾ ¾²µç, ¼¼Æ÷¸¦ ¸¸µéµç, ¿ìÁÖ´Â °ø»óÀû ¼öÇÐÀÌ ¾Æ´Ï¶ó Çö½ÇÀÇ ¿ø¸®¿¡ µû¶ó ¿òÁ÷ÀδÙ. È®·üÀº °­·ÂÇÏÁö¸¸, Àü´ÉÇÏÁö ¾Ê´Ù. È®·ü¿¡ ´ëÇÑ ¼ºÂûÀº °¡´É¼º°ú ºÒ°¡´É¼ºÀÇ °æ°è¸¦ ÀÌÇØÇÏ´Â µµ±¸ÀÏ »Ó, ¸¸´É ¿­¼è°¡ ¾Æ´Ï´Ù.

(Ãâó - FRANKLIN OPEN, December 2024, Vol. 9 ¡°A Numerical Evaluation of the Finite Monkeys Theorem,¡± by Stephen Woodcock, Jay Falletta. © Elsevier B.V.  All rights reserved.)