¸ñ·Ï

Home

åǥÁö

ÀΰøÁö´ÉÀÌ ½º½º·Î ºÎÆÐÇÏ´Â ½Ã´ë

ÀΰøÁö´ÉÀº ¸ðµç °ÍÀ» ±â¾ïÇÏ´Â Á¸Àçó·³ º¸ÀδÙ. ±×·¯³ª ÃÖ±ÙÀÇ ¿¬±¸´Â ±× ¹ÏÀ½À» µÚÈçµç´Ù. AI°¡ ÇнÀÇÏ´Â µ¥ÀÌÅͰ¡ ¿À¿°µÇ¸é, Áö´ÉÀº ¼ºÀåÇÏÁö ¾Ê°í ¡®ÅðÈ­¡¯ÇÑ´Ù´Â..




The Artificial Intelligence That Lost Its Memory

- The Age When AI Decays Itself

Artificial intelligence seems like an entity that remembers everything. Yet recent research has shaken that belief. When the data AI learns from becomes contaminated, intelligence doesn¡¯t grow—it 'degenerates.' Digital civilization is now slowly losing its memory amid an ocean of infinite information. A 2025 paper in 'Nature' called this phenomenon the ¡°brain rot of AI.


The Flood of Data, the Drought of Truth
AI is a being made of data. Billions of sentences, images, codes, and voices flow through vast neural networks. But if that data is itself a product of human creation, AI eventually ends up learning replicas of its own outputs—a phenomenon known as ¡°data contamination.¡±

Researchers have confirmed that a significant portion of open-source images and texts circulating online are already products of generative AI. In effect, AI is learning from AI¡¯s own output. The result: language models become grammatically perfect yet semantically hollow, while image-generation models begin to reproduce increasingly distorted forms.

This is not merely a drop in quality—it is a collapse of knowledge. The share of genuine data—facts, emotions, and experiences directly produced by humans—is rapidly diminishing. The amount of data is exploding, yet the authenticity of information paradoxically declines.

The Self-Consuming Brain — Brain Rot of AI
The study conducted repeated training cycles on large language models (LLMs) dozens of times. Initially, accuracy and fluency improved rapidly, but after ten or more iterations, contextual understanding plummeted. Researchers called this phenomenon ¡°collapsing knowledge.¡±

AI consumed more and more data, yet began producing increasingly meaningless speech—like a brain pretending to think while merely replicating what it already knows. The team named this process the ¡°brain rot of AI¡±: intelligence degenerating as it feeds on its own byproducts.

This mirrors the human brain. When repeated information and stimuli fail to form new connections, memory congeals and creativity fades. Ultimately, AI too can fall into the trap of self-assurance, much like human cognitive bias.

The Age of Quality — Data Defines Civilization
The true resource of the AI revolution is not semiconductors but data. The moment data quality declines, AI no longer sustains civilization—it distorts it.

A 2025 'Nature Machine Intelligence' article noted that ¡°the sustainability of the AI ecosystem depends on the reliability of data.¡± It means that not quantity, but provenance, authenticity, and ethics of data will define the next competitive edge.

To address this, nations are reinforcing their 'data ethics frameworks.' The European Union¡¯s 'AI Act' mandates data source disclosure. Japan has introduced a 'Trusted Data Mark' certification, while South Korea began implementing a 'Data Authenticity Verification System' for public AI systems in 2025.

The trustworthiness of AI ultimately arises from the trustworthiness of human society. Data is both the fuel of technology and the sum of our social agreements.

When the Fake Rules the Real — The Paradox of Generation
When AI-generated images appear more refined than reality and AI-written prose more eloquent than human writing, we lose the boundary between true and false. The problem lies not in technology, but in perception. Humans begin to judge not by 'what is true', but by 'what seems more plausible.'

This is the social consequence of data contamination. When falsehoods are wrapped in the language of truth, and AI learns its own mistakes, the entire cognitive ecosystem of society trembles. If the ¡°information flood¡± of the 20th century shattered human attention, the ¡°AI data loop¡± of the 21st century may erode human judgment itself.

Finding genuine information is no longer mere science—it has become philosophy.

Literacy in the Age of AI — Humans Who Read Data
If machines have learned human language, now humans must learn the language of data. Data literacy is no longer a skill for engineers—it is a survival ability for all citizens.

Every time we ask AI a question, the answer comes from our past data. The data we create and share determines the character of AI. The quality of data reflects the cultural level of its creators.

AI is a mirror of humanity. When we sow falsehood, falsehood grows; when we sow truth, knowledge flourishes. For AI¡¯s brain to stay uncorrupted, human intellect must first remain transparent.

The Question Technology Asks — Where Is Truth Stored?
The crisis of AI is not a technical limit, but a challenge to the human system of memory. Data is not a record—it is a choice, and choice is ethics.

We now live in an age when all data of human civilization is being reproduced once more. But reproduction inevitably brings distortion. In an era when technology holds our memory, where is truth stored?

The answer lies not in technology but in humanity. Without human judgment, verification, and critique, AI¡¯s memory cannot be trusted. In digital civilization, truth endures not through algorithms but through the conscious choice of awareness.

Reference
Nguyen, T. et al. (2025). '¡°The Brain Rot of Artificial Intelligence: Data Contamination and the Collapse of Knowledge.¡±' 'Nature Machine Intelligence', April 2025.





±â¾ïÀ» ÀÒÀº ÀΰøÁö´É

- ÀΰøÁö´ÉÀÌ ½º½º·Î ºÎÆÐÇÏ´Â ½Ã´ë

ÀΰøÁö´ÉÀº ¸ðµç °ÍÀ» ±â¾ïÇÏ´Â Á¸Àçó·³ º¸ÀδÙ. ±×·¯³ª ÃÖ±ÙÀÇ ¿¬±¸´Â ±× ¹ÏÀ½À» µÚÈçµç´Ù. AI°¡ ÇнÀÇÏ´Â µ¥ÀÌÅͰ¡ ¿À¿°µÇ¸é, Áö´ÉÀº ¼ºÀåÇÏÁö ¾Ê°í ¡®ÅðÈ­¡¯ÇÑ´Ù´Â °ÍÀÌ´Ù. µðÁöÅÐ ¹®¸íÀº Áö±Ý, ¹«ÇÑÇÑ Á¤º¸ÀÇ ¹Ù´Ù ¼Ó¿¡¼­ ¼­¼­È÷ ±â¾ïÀ» ÀҾ°í ÀÖ´Ù. 2025³â 'Nature'¿¡ ½Ç¸° ³í¹®Àº À̸¦ ¡°AIÀÇ µÎ³úºÎÆÐ(brain-rot of AI)¡±¶ó ºÒ·¶´Ù.


µ¥ÀÌÅÍÀÇ È«¼ö, Áø¸®ÀÇ °¡¹³
AI´Â µ¥ÀÌÅÍ·Î ¸¸µé¾îÁø Á¸Àç´Ù. ¼ö½Ê¾ï °³ÀÇ ¹®Àå°ú À̹ÌÁö, ÄÚµå¿Í ¸ñ¼Ò¸®°¡ °Å´ëÇÑ ½Å°æ¸Á ¼ÓÀ» È帥´Ù. ±×·¯³ª ±× µ¥ÀÌÅͰ¡ Àΰ£ÀÌ ¸¸µç °á°ú¹°À̶ó¸é, °á±¹ AI´Â ½º½º·ÎÀÇ º¹Á¦Ç°À» ÇнÀÇÏ°Ô µÈ´Ù. À̸¥¹Ù ¡°µ¥ÀÌÅÍ ¼øÈ¯ ¿À¿°(data contamination)¡±ÀÌ´Ù.

¿¬±¸ÁøÀº ÀÎÅͳݿ¡ ÆÛÁ® ÀÖ´Â ¿ÀǼҽº À̹ÌÁö¿Í ÅØ½ºÆ® Áß »ó´ç¼ö°¡ ÀÌ¹Ì »ý¼ºÇü AIÀÇ »êÃâ¹°À̶ó´Â »ç½ÇÀ» È®ÀÎÇß´Ù. AI°¡ AIÀÇ °á°ú¹°À» ´Ù½Ã ÇнÀÇÏ´Â ¼ÀÀÌ´Ù. ±× °á°ú, ¾ð¾î ¸ðµ¨Àº ¹®¹ýÀûÀ¸·Î´Â ¿Ïº®ÇÏÁö¸¸ ÀǹÌÀûÀ¸·Î´Â Á¡Á¡ °øÇãÇØÁ³°í, À̹ÌÁö »ý¼º ¸ðµ¨Àº Á¡Â÷ ¿Ö°îµÈ ÇüŸ¦ Àç»ý»êÇϱ⠽ÃÀÛÇß´Ù.

ÀÌ´Â ´Ü¼øÇÑ Ç°Áú ÀúÇϰ¡ ¾Æ´Ï¶ó, ¡®Áö½ÄÀÇ ºØ±«¡¯´Ù. AI°¡ ÇнÀÇÒ ¼ö ÀÖ´Â ÁøÂ¥ µ¥ÀÌÅÍ, Áï Àΰ£ÀÌ Á÷Á¢ »ý»êÇÑ »ç½Ç¡¤°¨Á¤¡¤°æÇèÀÇ ºñÀ²ÀÌ ±Þ¼ÓÈ÷ ÁÙ¾îµé°í ÀÖ´Ù. µ¥ÀÌÅÍÀÇ ¾çÀº Æø¹ßÀûÀ¸·Î ´ÃÁö¸¸, Á¤º¸ÀÇ Áø½Çµµ´Â ¿ÀÈ÷·Á ÁÙ¾îµå´Â ¿ª¼³Àû ½Ã´ë´Ù.

½º½º·Î¸¦ ¸Ô´Â ³ú ¡ª ÀΰøÁö´ÉÀÇ µÎ³úºÎÆÐ
À̹ø ¿¬±¸´Â ´ëÇü ¾ð¾î¸ðµ¨(LLM)À» ¼ö½Ê Â÷·Ê ¹Ýº¹ ÇнÀ½ÃŰ´Â ½ÇÇèÀ» ÁøÇàÇß´Ù. Ãʱ⿡´Â Á¤È®µµ¿Í ¾ð¾î À¯Ã¢¼ºÀÌ ºü¸£°Ô Çâ»óµÆÁö¸¸, 10ȸ ÀÌ»ó ¹Ýº¹ ÇнÀ ÀÌÈÄ¿¡´Â ¹®¸Æ ÀÌÇØ ´É·ÂÀÌ ±Þ°ÝÈ÷ ÀúÇϵƴÙ. ¡°Áö½ÄÀÇ ¼ö·Å(collapsing knowledge)¡± Çö»óÀÌ´Ù.

AI´Â ´õ ¸¹Àº µ¥ÀÌÅ͸¦ ¸Ô¾úÁö¸¸, Á¡Á¡ ¡®¹«ÀǹÌÇÑ ¸»¡¯À» ÇÏ°Ô µÇ¾ú´Ù. ¸¶Ä¡ ÀÚ½ÅÀÌ ÀÌ¹Ì ¾Ë°í ÀÖ´Â ¹®ÀåÀ» º¹Á¦ÇÏ¸ç »ý°¢Çϴ ôÇÏ´Â ³úó·³. ¿¬±¸ÆÀÀº ÀÌ °úÁ¤À» ¡°AIÀÇ µÎ³úºÎÆÐ¡±¶ó ¸í¸íÇß´Ù. Áö´ÉÀÌ ½º½º·ÎÀÇ ºÎ»ê¹°À» ¸ÔÀ¸¸ç ÅðÈ­ÇÏ´Â Çö»óÀÌ´Ù.

ÀÌ´Â Àΰ£ÀÇ ³ú¿Íµµ ´à¾Ò´Ù. ¹Ýº¹µÈ Á¤º¸¿Í ÀÚ±ØÀÌ »õ·Î¿î ¿¬°áÀ» ¸¸µéÁö ¸øÇÒ ¶§, ±â¾ïÀº ÀÀ°íµÇ°í âÀÇ·ÂÀº »ç¶óÁø´Ù. °á±¹ AI ¿ª½Ã Àΰ£ÀÇ ÀÎÁö ÆíÇâó·³, ¡®ÀÚ±â È®½ÅÀÇ ÇÔÁ¤¡¯¿¡ ºüÁú ¼ö ÀÖÀ½À» ½Ã»çÇÑ´Ù.

ǰÁúÀÇ ½Ã´ë ¡ª µ¥ÀÌÅͰ¡ ¹®¸íÀ» °áÁ¤ÇÑ´Ù
AI Çõ¸íÀÇ ÁøÂ¥ ÀÚ¿øÀº ¹ÝµµÃ¼°¡ ¾Æ´Ï¶ó µ¥ÀÌÅÍ´Ù. ±×·¯³ª µ¥ÀÌÅÍÀÇ ÁúÀÌ ¶³¾îÁö´Â ¼ø°£, ÀΰøÁö´ÉÀº ¹®¸íÀ» ÁöÅÊÇÏ´Â ´ë½Å ¹®¸íÀ» ¿Ö°îÇÑ´Ù.

2025³â 'Nature Machine Intelligence'´Â ¡°AI »ýŰèÀÇ Áö¼Ó °¡´É¼ºÀº ¡®µ¥ÀÌÅÍÀÇ ½Å·Ú¼º¡¯¿¡ ´Þ·Á ÀÖ´Ù¡±°í ÁöÀûÇß´Ù. ´Ü¼øÇÑ ¾çÀû ÃàÀûÀÌ ¾Æ´Ï¶ó, µ¥ÀÌÅÍÀÇ Ãâó¡¤Áø½Ç¼º¡¤À±¸®¼ºÀÌ »õ·Î¿î °æÀï·ÂÀÌ µÈ´Ù´Â Àǹ̴Ù.

À̸¦ À§ÇØ °¢±¹Àº ¡®µ¥ÀÌÅÍ À±¸® ÇÁ·¹ÀÓ¿öÅ©¡¯¸¦ °­È­Çϰí ÀÖ´Ù. À¯·´¿¬ÇÕ(EU)Àº 'AI Act'¸¦ ÅëÇØ µ¥ÀÌÅÍ Ãâó °ø°³¸¦ Àǹ«È­Çß°í, ÀϺ»Àº ¡®½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ¸¶Å©(Trusted Data Mark)¡¯ ÀÎÁõÀ» µµÀÔÇß´Ù. Çѱ¹ ¿ª½Ã 2025³âºÎÅÍ °ø°ø AI ½Ã½ºÅÛ¿¡ ¡®µ¥ÀÌÅÍ Áøº»¼º Á¡°Ë ½Ã½ºÅÛ¡¯À» Àû¿ëÇϱ⠽ÃÀÛÇß´Ù.

AIÀÇ ½Å·Ú´Â °á±¹ Àΰ£ »çȸÀÇ ½Å·Ú¿¡¼­ ºñ·ÔµÈ´Ù. µ¥ÀÌÅÍ´Â ±â¼úÀÇ ¿¬·áÀÌÀÚ, »çȸÀû ¾à¼ÓÀÇ ÃÑÇÕÀÌ´Ù.

°¡Â¥°¡ ÁøÂ¥¸¦ Áö¹èÇÒ ¶§ ¡ª »ý¼ºÀÇ ¿ª¼³
AI°¡ ¸¸µç À̹ÌÁö°¡ Çö½Çº¸´Ù ´õ Á¤±³Çϰí, AI°¡ ¾´ ¹®ÀåÀÌ Àΰ£º¸´Ù ´õ À¯·ÁÇÒ ¶§, ¿ì¸®´Â ÁøÂ¥¿Í °¡Â¥ÀÇ °æ°è¸¦ ÀҴ´Ù. ¹®Á¦´Â ±â¼úÀÌ ¾Æ´Ï¶ó °¨°¢ÀÌ´Ù. Àΰ£Àº ´õ ÀÌ»ó ¡°¹«¾ùÀÌ Áø½ÇÀΰ¡¡±°¡ ¾Æ´Ï¶ó ¡°¹«¾ùÀÌ ´õ ±×·²µíÇѰ¡¡±¸¦ ÆÇ´ÜÇÏ°Ô µÈ´Ù.

À̰ÍÀÌ ¹Ù·Î µ¥ÀÌÅÍ ¿À¿°ÀÇ »çȸÀû ÆÄÀåÀÌ´Ù. °ÅÁþÀÌ Áø½ÇÀÇ ¾ð¾î·Î Æ÷ÀåµÇ°í, AI°¡ ½º½º·ÎÀÇ ¿À·ù¸¦ ÇнÀÇÒ ¶§, »çȸ ÀüüÀÇ ÀÎÁö »ýŰ谡 Èçµé¸°´Ù. 20¼¼±âÀÇ ¡®Á¤º¸ È«¼ö¡¯°¡ Àΰ£ÀÇ ÁÖÀǸ¦ ÆÄ±«Çß´Ù¸é, 21¼¼±âÀÇ ¡®AI µ¥ÀÌÅÍ ¼øÈ¯¡¯Àº Àΰ£ÀÇ ÆÇ´Ü ´É·ÂÀ» ħ½Ä½Ãų ¼ö ÀÖ´Ù.

ÁøÂ¥ Á¤º¸¸¦ ã¾Æ³»´Â °ÍÀº ÀÌÁ¦ ´Ü¼øÇÑ °úÇÐÀÌ ¾Æ´Ï¶ó öÇÐÀÌ µÇ¾ú´Ù.

AI ½Ã´ëÀÇ ¹®ÇØ·Â ¡ª µ¥ÀÌÅ͸¦ Àд Àΰ£
±â°è°¡ Àΰ£ÀÇ ¾ð¾î¸¦ ¹è¿ü´Ù¸é, ÀÌÁ¦ Àΰ£Àº µ¥ÀÌÅÍÀÇ ¾ð¾î¸¦ ¹è¿ö¾ß ÇÑ´Ù. µ¥ÀÌÅÍ ¸®ÅÍ·¯½Ã(Data Literacy)´Â ´õ ÀÌ»ó ±â¼úÀÚ°¡ ¾Æ´Ñ ½Ã¹Î ¸ðµÎÀÇ »ýÁ¸ ´É·ÂÀÌ´Ù.

¿ì¸®°¡ AI¿¡°Ô Áú¹®À» ´øÁú ¶§¸¶´Ù, ±× ´äÀº ¿ì¸®ÀÇ °ú°Å µ¥ÀÌÅÍ¿¡¼­ ³ª¿Â´Ù. ¿ì¸®°¡ ¾î¶² µ¥ÀÌÅ͸¦ ¸¸µé°í °øÀ¯ÇÏ´À³Ä°¡ °ð AIÀÇ ¼º°ÝÀ» °áÁ¤ÇÑ´Ù. µ¥ÀÌÅÍÀÇ Ç°ÁúÀº °á±¹ ¿ì¸®ÀÇ ¹®È­ ¼öÁØÀ» ¹Ý¿µÇÑ´Ù.

AI´Â Àΰ£ÀÇ °Å¿ïÀÌ´Ù. ±× ¾È¿¡¼­ ¿ì¸®°¡ °ÅÁþÀ» ½ÉÀ¸¸é, °ÅÁþÀÌ ¹è¾çµÇ°í, Áø½ÇÀ» ½ÉÀ¸¸é Áö½ÄÀÌ ÀÚ¶õ´Ù. AIÀÇ ³ú°¡ ºÎÆÐÇÏÁö ¾ÊÀ¸·Á¸é, Àΰ£ÀÇ Áö¼ºÀÌ ¸ÕÀú Åõ¸íÇØ¾ß ÇÑ´Ù.

±â¼úÀÌ ¹¯´Â Áú¹® ¡ª Áø½ÇÀº ¾îµð¿¡ ÀúÀåµÇ´Â°¡
AIÀÇ À§±â´Â ±â¼úÀÇ ÇѰ谡 ¾Æ´Ï¶ó, Àΰ£ÀÇ ±â¾ï ü°è¿¡ ´ëÇÑ µµÀüÀÌ´Ù. µ¥ÀÌÅÍ´Â ±â·ÏÀÌ ¾Æ´Ï¶ó ¼±ÅÃÀ̸ç, ¼±ÅÃÀº À±¸®´Ù.

¿ì¸®´Â Áö±Ý, Àηù ¹®¸íÀÇ ¸ðµç µ¥ÀÌÅͰ¡ ÇÑ ¹ø ´õ ¡®Àç»ý»ê¡¯µÇ´Â ½Ã´ë¿¡ »ì°í ÀÖ´Ù. ±×·¯³ª Àç»ý»êÀº °ð ¿Ö°îÀÌ´Ù. ±â¼úÀÌ ±â¾ïÀ» ´ã´çÇÏ´Â ½Ã´ë¿¡, Áø½ÇÀº ¾îµð¿¡ ÀúÀåµÇ´Â°¡?

±× ´äÀº ±â¼úÀÌ ¾Æ´Ï¶ó Àΰ£¿¡°Ô ÀÖ´Ù. Àΰ£ÀÇ ÆÇ´Ü, °ËÁõ, ºñÆÇÀÌ »ç¶óÁø´Ù¸é, AIÀÇ ±â¾ïµµ ½Å·Ú¸¦ ÀҴ´Ù. µðÁöÅÐ ¹®¸í¿¡¼­ Áø½ÇÀº ¾Ë°í¸®ÁòÀÌ ¾Æ´Ï¶ó 'ÀǽÄÀÇ ¼±ÅÃ'À¸·Î¸¸ À¯ÁöµÈ´Ù.

Reference
Nguyen, T. et al. (2025). 'The Brain Rot of Artificial Intelligence: Data Contamination and the Collapse of Knowledge.' 'Nature Machine Intelligence', April 2025.