¸ñ·Ï

Home

åǥÁö

[MBA] »ý¼ºÇü AI°¡ Á¦Ç° °³¹ß¿¡ ¹ÌÄ¡´Â ¿µÇâ

±â¾÷ Çõ½Å ±×·ìµéÀÌ Á¡Á¡ ´õ »ý¼ºÇü AI¸¦ È°¿ëÇÏ¿© ¾ÆÀ̵ð¾î ¹ß»ó°ú âÀǼº Çâ»ó, ½ÃÀå ¹× °í°´ ÀλçÀÌÆ® È®º¸, º¹ÀâÇÑ ½Ã½ºÅÛ¿¡ »ç¿ëÇϱ⠽¬¿î ÀÎÅÍÆäÀ̽º Ãß°¡¿¡ ÁýÁß..




When Generative AI Meets Product Development

As enterprises experiment with use cases for generative AI, one of the most promising emerging areas is incorporating image-generation and text-generation tools in the product development process. Consequently, corporate innovation groups are increasingly using generative AI to enhance ideation and creativity, gain market and customer insights, and add user-friendly interfaces to sophisticated systems.

In the Fall 2024 MIT Sloan Management Review, researchers Tucker J. Marion, Mahdi Srour, and Frank Piller explain the implications. This is based on extensive research in the field, which includes dozens of real-world interviews with managers.

In the process, they have seen how generative AI can be a catalyst for transforming and enhancing traditional innovation workflows. They examine three ¡°use cases¡± which provide insights into three ways companies can navigate the integration of generative AI technologies to increase the productivity of their innovation teams.


Use Case 1: Enhancing Creativity and Design Workflows
The Boston-based design agency Loft is one of numerous ¡°innovation shops¡± using generative AI technology in its creative process. In a project it launched in May 2023, Loft tapped GPT-4 to suggest new product features by prompting it with known customer preferences.

It then identified and refined the most promising ideas via additional prompts. Meanwhile, the designers began sketching product concepts and then uploaded the sketches into image generator Midjourney, where they could refine the visual designs with prompts in addition to reworking them on paper.

In these creative stages of the innovation process, generative AI¡¯s tendency to produce hallucinations - text or images that defy facts or logic - was of no concern, since the team was just looking for ideas. This kind of use case is supported by research that found that humans often come up with more useful ideas when they brainstorm with the assistance of generative AI.

When the development process moves into design and engineering, tools must be trusted to produce reliable outputs. Publicly available generative AI platforms could have helped the Loft team conceptualize ideas and sketch early prototypes, but the company paused its use of generative AI tools at this stage while its engineers built prototypes based on the selected concepts.

The Loft team gathered consumer feedback on the prototypes through video focus groups and surveys. GenAI was used to generate transcripts of consumer interactions with prototypes and then analyze them, a task at which large language models (or LLMs) like ChatGPT excel.

The LLM summarized and clustered the data, recommended areas for improvement, and identified features that consumers liked as input for product launch marketing. The design team then integrated the findings, including general and specific product insights, into the initial design concepts.

At this stage, Loft avoided asking the LLM questions that could elicit information beyond what the input data could address, to prevent hallucinations from affecting the analysis. Since that initial project, augmenting product development with generative AI has led to significant improvements in Loft¡¯s design process.

For example, Loft¡¯s designers used the technology to quickly generate 50 new concepts for a guitar toy that featured different product characteristics. Without generative AI, they would have spent many hours reading testers¡¯ feedback and sketching new concepts accordingly.

Generative AI has not only helped them to work faster but also to more effectively envision the product changes that will best address specific consumer needs. The company estimates that using generative AI has cut its product development time in half.


Use Case 2: Use Generative AI for Customer Insights and Concept Validation
Designers at a Czech company called Creative Dock help clients create new business units, products, and services. To do so, they incorporate numerous rounds of market feedback into multiple iterations of business model concepts before launch.

Using existing large-scale market research data about customer needs in a specific sector, the company programmed an AI agent to generate simulations of qualitative interviews with potential customers representing specific personas. Some interviews concerned customer demands and preferences, while others were intended to get feedback on alternative value propositions for a new offering.

Employing this proprietary data, the tool utilizes pre-trained LLMs such as GPT and fine-tunes them for specific use cases. These customized language models can address specific market questions in each segment, allowing Creative Dock teams to use generative AI for ideation, market needs identification, and rapid concept testing.

The tool also accelerates the design, testing, and creation of minimum viable products. Martin Pejsa, the company¡¯s founder, reported a 30% increase in technical development efficiency, a 40% efficiency gain in graphic design, and a tripling of content creation speed.

AI is also used to review all new business models. As a result, Creative Dock has achieved 50% year-over-year growth without adding any full-time employees.

A firm called FlecheTech is also using generative AI to gather customer requirements, but in a very different way. The Swiss startup has built an expert application for designing and rapidly prototyping printed circuit boards (or PCBs).

Its target users are hobbyists, entrepreneurs, and anyone who needs a custom PCB for a hardware prototype or small-series production but may not have a deep understanding of electrical engineering and PCB design. FlecheTech has fine-tuned a pre-trained LLM using a database of many PCB designs and their descriptions to create an interface that users can interact with in plain language - such as ¡°I need to measure this physical value,¡± ¡°make X rotate at Y speed,¡± or ¡°communicate with this protocol¡± - to design a circuit.

More complex PCB design queries are broken down into simpler subtasks as the LLM automatically identifies them. In addition, customers with complex designs can have the FlecheTech team review their GenAI-assisted PCB design before proceeding to prototyping.

The company says this has reduced the six to eight weeks it typically takes a human designer to create a working board design by an average of more than 80%, with much greater productivity gains for novice users (and thus a much larger market for the company¡¯s product). 

Compared with its competition, FlecheTech also has a considerable cost advantage because its staff does not necessarily have to interact with individual customers to understand their specific demands for a custom PCB; it has mostly outsourced this process to its GenAI-based chatbot.

And that brings us to¡¦


Use Case 3: LLMs as Natural Language Interfaces to Complex Design Tools
The linguistic fluency of LLMs and ease of user interaction with them supports another use case in the product design process: using them as front-end interfaces to advanced simulation and engineering systems. 

Siemens¡¯ industry division has recently added generative AI capabilities to its highly sophisticated engineering and design software, enabling a much wider range of users to interact with these systems. One of its tools, Simcenter, is an established simulation package that allows engineers to model the exact physical behavior of products or processes, replacing physical prototypes and test beds with digital ones.

While powerful, Simcenter typically requires long ramp-up times and extensive user training, and interpreting its results requires specialized expertise. Siemens combined the tool with a GenAI-based user interface to create HiSimcenter.

HiSimcenter can handle a range of tasks, such as answering simple queries about selecting the best computer-aided engineering tool for a given task or executing a fully automated generative design capability that inputs product requirements and directly generates a compliant design.

The ChatGPT-based application has helped engineers set up and run complex simulation models, resulting in a more than 50% increase in modeling efficiency.

Setting up such a system is not an easy endeavor. The Siemens engineers who developed HiSimcenter realized that having a reliable ground truth is the critical challenge in building a hybrid expert system.

Because they expect training data to become critical to developing additional expert applications using generative AI, they train selected employees across all major engineering tasks to assess the quality of data associated with specific tasks before it¡¯s used to train the LLM model.

Siemens chose a small group of experts to develop HiSimcenter. This centralized approach allows the expert team to maintain control and ensure the quality of the GenAI output and its compliance with Siemens policies and engineering standards.

So, what are the implications? Beyond the hype, generative AI can bring tangible benefits to companies¡¯ innovation and development processes.

Managers should consider how the three ways of using generative AI outlined earlier fit into their industry and their innovation strategy. Organizations also need a clear understanding of expectations and desired outcomes and an appreciation that different innovation tasks require different approaches.

Publicly available generative AI tools like ChatGPT or Midjourney are well suited for creativity and ideation, as experienced by the design firms the authors studied.

For more focused applications, like validating a concept with synthetic personas, a pretrained model must be enhanced with training data on the particular context.

The amount, diversity, and quality of training data defines trust and significantly impacts GenAI output quality in terms of addressing a specific context or market segment.

When very high precision and confidence in the results are essential, conventional simulation platforms and expert systems are required.

As Siemens and FlecheTech have demonstrated, LLMs can serve as efficient user interfaces to these systems, allowing them to be used for complex engineering or scientific research tasks by a much larger base of users, such as those who have domain expertise but are unfamiliar with simulation systems.

When users don¡¯t need to have simulation experts manage the expert systems for them, they are likely to run many more simulations - using such tools for discovery and not just for validation.

Lastly, given the speed with which these technologies are evolving, the question of integration within the organization becomes more critical. As Siemens demonstrates, a top-down approach of strategically investing in internal development and strategic partnerships is one approach to integration.

However, these initiatives take time, and the latency of implementation may result in a technology deployment that is already dated by the time it¡¯s available.

Hence, the authors also recommend a bottom-up, democratized approach where teams and individuals select, use, and build tools as they see fit.

Their research suggests that a mix of both approaches allows organizations to strategically build better data and trustworthy solutions while allowing for dynamic experimentation.

- MIT SLOAN MANAGEMENT REVIEW, Fall 2024, ¡°When Generative AI Meets Product Development,¡± by Tucker J. Marion, Mahdi Srour, and Frank Piller. © 2024 Massachusetts Institute of Technology. All rights reserved.





»ý¼ºÇü AI°¡ Á¦Ç° °³¹ß¿¡ ¹ÌÄ¡´Â ¿µÇâ

±â¾÷µéÀÌ »ý¼ºÇü AIÀÇ È°¿ë »ç·Ê¸¦ ½ÇÇèÇϸ鼭 °¡Àå À¯¸ÁÇÑ ºÐ¾ß Áß Çϳª´Â Á¦Ç° °³¹ß °úÁ¤¿¡ À̹ÌÁö »ý¼º ¹× ÅؽºÆ® »ý¼º µµ±¸¸¦ ÅëÇÕÇÏ´Â °ÍÀÌ´Ù.

ÀÌ¿¡ µû¶ó ±â¾÷ Çõ½Å ±×·ìÀº Á¡Á¡ ´õ »ý¼ºÇü AI¸¦ È°¿ëÇÏ¿© ¾ÆÀ̵ð¾î ¹ß»ó°ú âÀǼº Çâ»ó, ½ÃÀå ¹× °í°´ ÀλçÀÌÆ® È®º¸, º¹ÀâÇÑ ½Ã½ºÅÛ¿¡ »ç¿ëÇϱ⠽¬¿î ÀÎÅÍÆäÀ̽º Ãß°¡¿¡ ÁýÁßÇÏ°í ÀÖ´Ù.

2024³â °¡À» MIT ½½·ÎÀÎ ¸Å´ÏÁö¸ÕÆ® ¸®ºä(MIT Sloan Management Review)¿¡¼­ ¿¬±¸ÀÚ ÅÍÄ¿ J. ¸Þ¸®¾ð(Tucker J. Marion), ¸¶Èåµð ½º·Î¾î(Mahdi Srour), ÇÁ·©Å© ÇÊ·¯(Frank Piller)´Â ÀÌ·¯ÇÑ Àû¿ë °¡´É¼º¿¡ ´ëÇØ ¼³¸íÇÏ°í ÀÖ´Ù.

ÀÌ ¿¬±¸´Â ¸Å´ÏÀúµé°úÀÇ ¼ö½Ê °ÇÀÇ ½Ç¹« ÀÎÅͺ並 Æ÷ÇÔÇÑ ±¤¹üÀ§ÇÑ ÇöÀå ¿¬±¸¸¦ ±â¹ÝÀ¸·Î ÇÏ°í ÀÖ´Ù.

¿¬±¸ °úÁ¤¿¡¼­ ¿¬±¸ÁøÀº »ý¼ºÇü AI°¡ ±âÁ¸ÀÇ Çõ½Å ¿öÅ©Ç÷θ¦ º¯ÇõÇÏ°í Çâ»óÇÏ´Â µ¥ Ã˸Š¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ½À» È®ÀÎÇß´Ù.

ÀÌ ¿¬±¸¿¡¼­´Â »ý¼ºÇü AI ±â¼úÀ» ÅëÇÕÇÏ¿© Çõ½Å ÆÀÀÇ »ý»ê¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Â ¼¼ °¡Áö ¹æ¹ýÀ» Á¦½ÃÇÏ°í ÀÖ´Ù.


È°¿ë »ç·Ê 1: âÀǼº°ú µðÀÚÀÎ ¿öÅ©Ç÷ΠÇâ»ó
º¸½ºÅÏ¿¡ ±â¹ÝÀ» µÐ µðÀÚÀÎ ¿¡ÀÌÀü½Ã ·ÎÇÁÆ®(Loft)´Â âÀÇ °úÁ¤¿¡¼­ »ý¼ºÇü AI ±â¼úÀ» »ç¿ëÇÏ´Â ¿©·¯ "Çõ½ÅÀûÀÎ ÀÛ¾÷Àå" Áß ÇϳªÀÌ´Ù.

·ÎÇÁÆ®´Â 2023³â 5¿ù ½ÃÀÛµÈ ÇÁ·ÎÁ§Æ®¿¡¼­ GPT-4¸¦ È°¿ëÇÏ¿© ±âÁ¸ °í°´ ¼±È£µµ¸¦ ÀÔ·ÂÇØ »õ·Î¿î Á¦Ç° ±â´ÉÀ» Á¦¾ÈÇϵµ·Ï Çß´Ù.

¶ÇÇÑ Ãß°¡ ÀÔ·ÂÀ» ÅëÇØ °¡Àå À¯¸ÁÇÑ ¾ÆÀ̵ð¾î¸¦ ½Äº°ÇÏ°í ´Ùµë¾ú´Ù.

ÇÑÆí, µðÀÚÀ̳ʵéÀº Á¦Ç° °³³äÀ» ½ºÄÉÄ¡Çϱ⠽ÃÀÛÇÏ°í, À̹ÌÁö »ý¼º µµ±¸ ¹ÌµåÀú´Ï(Midjourney)¿¡ ÀÌ ½ºÄÉÄ¡¸¦ ¾÷·ÎµåÇÏ¿© Á¾ÀÌ ÀÛ¾÷°ú ÇÔ²² ÇÁ·ÒÇÁÆ®¸¦ ÅëÇØ ½Ã°¢Àû µðÀÚÀÎÀ» ¼¼ºÎ Á¶Á¤ÇÒ ¼ö ÀÖ¾ú´Ù.

Çõ½Å °úÁ¤ÀÇ ÀÌ·¯ÇÑ Ã¢ÀÇÀû ´Ü°è¿¡¼­ »ý¼ºÇü AI°¡ »ç½ÇÀ̳ª ³í¸®¸¦ ¹þ¾î³ª´Â 'ȯ°¢'À» ÀÏÀ¸Å³ °¡´É¼ºÀº ¹®Á¦°¡ µÇÁö ¾Ê¾Ò´Ù.

ÆÀÀº ´Ü¼øÈ÷ ¾ÆÀ̵ð¾î¸¦ ¸ð»öÇÏ°í ÀÖ¾ú±â ¶§¹®ÀÌ´Ù.

ÀÌ¿Í °°Àº »ç·Ê´Â »ý¼ºÇü AIÀÇ Áö¿øÀ» ¹Þ¾Æ ºê·¹ÀνºÅä¹ÖÀ» ÁøÇàÇÒ ¶§ Àΰ£ÀÌ ´õ À¯¿ëÇÑ ¾ÆÀ̵ð¾î¸¦ ÀÚÁÖ Á¦¾ÈÇÏ°Ô µÈ´Ù´Â ¿¬±¸ °á°ú¿¡ ÀÇÇØ µÞ¹ÞħµÈ´Ù.

Á¦Ç° °³¹ß °úÁ¤ÀÌ µðÀÚÀΰú ¿£Áö´Ï¾î¸µ ´Ü°è·Î ³Ñ¾î°¡¸é µµ±¸´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â Ãâ·ÂÀ» Á¦°øÇØ¾ß ÇÑ´Ù.

°ø°³ÀûÀ¸·Î »ç¿ë °¡´ÉÇÑ »ý¼ºÇü AI Ç÷§ÆûÀº ·ÎÇÁÆ® ÆÀÀÌ ¾ÆÀ̵ð¾î¸¦ ±¸»óÇÏ°í Ãʱâ ÇÁ·ÎÅäŸÀÔÀ» ½ºÄÉÄ¡ÇÏ´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ¾úÁö¸¸, ȸ»ç´Â ¿£Áö´Ï¾îµéÀÌ ¼±ÅÃÇÑ °³³äÀ» ±â¹ÝÀ¸·Î ÇÁ·ÎÅäŸÀÔÀ» Á¦ÀÛÇÏ´Â µ¿¾È ÀÌ ´Ü°è¿¡¼­ »ý¼ºÇü AI µµ±¸ÀÇ »ç¿ëÀ» ÀϽà Áß´ÜÇß´Ù.

·ÎÇÁÆ® ÆÀÀº ¿µ»ó Æ÷Ä¿½º ±×·ì°ú ¼³¹® Á¶»ç¸¦ ÅëÇØ ÇÁ·ÎÅäŸÀÔ¿¡ ´ëÇÑ ¼ÒºñÀÚ Çǵå¹éÀ» ¼öÁýÇß´Ù.

»ý¼ºÇü AI´Â ¼ÒºñÀÚ¿Í ÇÁ·ÎÅäŸÀÔ °£ »óÈ£ÀÛ¿ëÀÇ ´ëº»À» »ý¼ºÇÏ°í À̸¦ ºÐ¼®ÇÏ´Â µ¥ »ç¿ëµÇ¾ú´Âµ¥, À̴ êGPT(ChatGPT)¿Í °°Àº ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM)ÀÌ ¶Ù¾î³­ ºÎºÐÀÌ´Ù.

LLMÀº µ¥ÀÌÅ͸¦ ¿ä¾àÇÏ°í Ŭ·¯½ºÅ͸µÇϸç, °³¼±ÀÌ ÇÊ¿äÇÑ ¿µ¿ªÀ» ÃßõÇÏ°í ¼ÒºñÀÚµéÀÌ ¼±È£ÇÏ´Â ±â´ÉÀ» ÆľÇÇØ Á¦Ç° Ãâ½Ã ¸¶ÄÉÆÿ¡ È°¿ëÇÒ ÀλçÀÌÆ®¸¦ Á¦°øÇÑ´Ù.

µðÀÚÀÎ ÆÀÀº ÀÌ ¹ß°ß ³»¿ëÀ» ÅëÇÕÇÏ¿© Á¦Ç°¿¡ ´ëÇÑ ÀϹÝÀûÀÌ°í ±¸Ã¼ÀûÀÎ ÀλçÀÌÆ®¸¦ Ãʱ⠵ðÀÚÀÎ °³³ä¿¡ ¹Ý¿µÇß´Ù.

ÀÌ ´Ü°è¿¡¼­ ·ÎÇÁÆ®´Â ÀÔ·Â µ¥ÀÌÅÍ°¡ ´Ù·ê ¼ö ÀÖ´Â ¹üÀ§¸¦ ¹þ¾î³ª´Â Áú¹®À» LLM¿¡ ÇÏÁö ¾ÊÀ½À¸·Î½á ȯ°¢ÀÌ ºÐ¼®¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ» »çÀü¿¡ ¹æÁöÇß´Ù.

ù ¹ø° ÇÁ·ÎÁ§Æ® ÀÌÈÄ »ý¼ºÇü AI¸¦ Á¦Ç° °³¹ß¿¡ ÅëÇÕÇÑ °á°ú, ·ÎÇÁÆ®ÀÇ µðÀÚÀÎ °úÁ¤Àº Å©°Ô °³¼±µÇ¾ú´Ù.

¿¹¸¦ µé¾î, ·ÎÇÁÆ®ÀÇ µðÀÚÀ̳ʵéÀº »ý¼ºÇü AI¸¦ »ç¿ëÇÏ¿© ´Ù¾çÇÑ Á¦Ç° Ư¼ºÀ» °®Ãá ±âŸ Àå³­°¨ÀÇ »õ·Î¿î ÄܼÁÆ® 50°³¸¦ ½Å¼ÓÇÏ°Ô »ý¼ºÇÒ ¼ö ÀÖ¾ú´Ù.

»ý¼ºÇü AI°¡ ¾ø¾ú´Ù¸é Å×½ºÆ® Âü¿©ÀÚÀÇ Çǵå¹éÀ» ÀÐ°í »õ·Î¿î ÄܼÁÆ®¸¦ ±¸»óÇÏ´Â µ¥ »ó´çÇÑ ½Ã°£ÀÌ °É·ÈÀ» °ÍÀÌ´Ù.

»ý¼ºÇü AI´Â ÀÛ¾÷ ¼Óµµ¸¦ ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ƯÁ¤ ¼ÒºñÀÚ ¿ä±¸¸¦ °¡Àå Àß ÃæÁ·½Ãų ¼ö ÀÖ´Â Á¦Ç° º¯°æ »çÇ×À» ´õ È¿°úÀûÀ¸·Î ±¸»óÇϵµ·Ï µµ¿Ô´Ù.

ȸ»ç´Â »ý¼ºÇü AI¸¦ »ç¿ëÇÔÀ¸·Î½á Á¦Ç° °³¹ß ½Ã°£À» Àý¹ÝÀ¸·Î ´ÜÃàÇÒ ¼ö ÀÖ¾ú´Ù°í Ãß»êÇÏ°í ÀÖ´Ù.


È°¿ë »ç·Ê 2: °í°´ ÀλçÀÌÆ®¿Í °³³ä °ËÁõÀ» À§ÇÑ »ý¼ºÇü AI È°¿ë
üÄÚ¿¡ À§Ä¡ÇÑ Å©¸®¿¡ÀÌƼºê µ¶(Creative Dock)À̶ó´Â ȸ»çÀÇ µðÀÚÀ̳ʵéÀº »õ·Î¿î ºñÁî´Ï½º À¯´Ö, Á¦Ç°, ¼­ºñ½ºÀÇ Ã¢ÃâÀ» Áö¿øÇϸç, À̸¦ À§ÇØ Ãâ½Ã Àü ¿©·¯ ¶ó¿îµåÀÇ ½ÃÀå Çǵå¹éÀ» ´Ù¾çÇÑ ºñÁî´Ï½º ¸ðµ¨ ÄÁ¼ÁÆ®¿¡ ÅëÇÕÇÑ´Ù.

ƯÁ¤ ºÐ¾ß¿¡¼­ °í°´ÀÇ ´ÏÁ ¹Ý¿µÇÑ ´ë±Ô¸ð ½ÃÀå Á¶»ç µ¥ÀÌÅ͸¦ È°¿ëÇØ ÀÌ È¸»ç´Â ƯÁ¤ Æ丣¼Ò³ª¸¦ ´ëÇ¥ÇÏ´Â ÀáÀç °í°´°úÀÇ Á¤¼ºÀû ÀÎÅͺ並 ½Ã¹Ä·¹À̼ÇÇÏ´Â AI ¿¡ÀÌÀüÆ®¸¦ ÇÁ·Î±×·¡¹ÖÇß´Ù.

ÀϺΠÀÎÅͺä´Â °í°´ÀÇ ¿ä±¸¿Í ¼±È£µµ¸¦ ´Ù·ç°í, ´Ù¸¥ ÀϺδ »õ·Î¿î Á¦Ç° Á¦°ø¿¡ ´ëÇÑ ´ëü °¡Ä¡ Á¦¾È¿¡ ´ëÇÑ Çǵå¹éÀ» ¹Þ±â À§ÇÑ ¸ñÀûÀ¸·Î ÀÌ·ç¾îÁ³´Ù.

ÀÌ µ¶Á¡ µ¥ÀÌÅ͸¦ È°¿ëÇØ µµ±¸´Â GPT¿Í °°Àº »çÀü ÇнÀµÈ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM)À» ƯÁ¤ ¿ëµµ¿¡ ¸Â°Ô ¹Ì¼¼ Á¶Á¤ÇØ »ç¿ëÇÑ´Ù.

ÀÌ·¸°Ô ¸ÂÃãÈ­µÈ ¾ð¾î ¸ðµ¨Àº °¢ ¼¼±×¸ÕÆ®¿¡¼­ ƯÁ¤ ½ÃÀå Áú¹®¿¡ ´äÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© Å©¸®¿¡ÀÌƼºê µ¶ ÆÀÀÌ »ý¼ºÇü AI¸¦ ¾ÆÀ̵ð¾î âÃâ, ½ÃÀå ¿ä±¸ ÆľÇ, ½Å¼ÓÇÑ °³³ä Å×½ºÆ®¿¡ È°¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÑ´Ù.

ÀÌ µµ±¸´Â ÃÖ¼Ò ±â´É Á¦Ç°(MVP, minimum viable products)ÀÇ µðÀÚÀÎ, Å×½ºÆ®, Á¦ÀÛÀ» °¡¼ÓÈ­Çϱ⵵ ÇÑ´Ù.

ȸ»ç ⸳ÀÚ ¸¶Æ¾ ÆäÀÌ»ç(Martin Pejsa)´Â ±â¼ú °³¹ß È¿À²¼ºÀÌ 30% Áõ°¡ÇÏ°í, ±×·¡ÇÈ µðÀÚÀÎ È¿À²¼ºÀÌ 40% Çâ»óµÇ¾úÀ¸¸ç, ÄÜÅÙÃ÷ Á¦ÀÛ ¼Óµµ´Â ¼¼ ¹è·Î Áõ°¡Çß´Ù°í º¸°íÇß´Ù.

ÀÌ·¯ÇÑ AI´Â ¸ðµç ½Å±Ô ºñÁî´Ï½º ¸ðµ¨ °ËÅä¿¡µµ »ç¿ëµÇ¾ú´Âµ¥, ±× °á°ú, Å©¸®¿¡ÀÌƼºê µ¶Àº Á¤±ÔÁ÷ Á÷¿ø Ãß°¡ ¾øÀÌ Àü³â ´ëºñ 50%ÀÇ ¼ºÀåÀ» ´Þ¼ºÇÒ ¼ö ÀÖ¾ú´Ù.

Ç÷¹½¬Å×Å©(FlecheTech)¶ó´Â ȸ»çµµ »ý¼ºÇü AI¸¦ »ç¿ëÇØ °í°´ ¿ä±¸ »çÇ×À» ¼öÁýÇÏÁö¸¸, Á¢±Ù ¹æ½ÄÀº »ó´çÈ÷ ´Ù¸£´Ù.

½ºÀ§½º¿¡ À§Ä¡ÇÑ ÀÌ ½ºÅ¸Æ®¾÷Àº Àμâ ȸ·Î ±âÆÇ(PCB)À» µðÀÚÀÎÇÏ°í ½Å¼ÓÇÏ°Ô ÇÁ·ÎÅäŸÀÔÀ» Á¦ÀÛÇÏ´Â Àü¹® ¾ÖÇø®ÄÉÀ̼ÇÀ» °³¹ßÇß´Ù.

ÁÖ¿ä »ç¿ëÀÚÃþÀº Çϵå¿þ¾î ÇÁ·ÎÅäŸÀÔÀ̳ª ¼Ò±Ô¸ð Á¦Ç° Á¦ÀÛ¿¡ ¸ÂÃãÇü PCB°¡ ÇÊ¿äÇÑ Ãë¹Ì°¡, â¾÷ÀÚ, ±×¸®°í Àü±â°øÇÐÀ̳ª PCB ¼³°è¿¡ ´ëÇÑ ±íÀº ÀÌÇØ°¡ ¾øÀ» ¼öµµ ÀÖ´Â »ç¿ëÀÚµéÀÌ´Ù.

Ç÷¹½¬Å×Å©´Â ´Ù¼öÀÇ PCB ¼³°è¿Í ¼³¸íÀÌ Æ÷ÇÔµÈ µ¥ÀÌÅͺ£À̽º¸¦ È°¿ëÇØ »çÀü ÇнÀµÈ LLMÀ» ¹Ì¼¼ Á¶Á¤ÇÏ¿© »ç¿ëÀÚ°¡ ¡°ÀÌ ¹°¸®Àû °ªÀ» ÃøÁ¤ÇÏ°í ½Í´Ù,¡± ¡°X¸¦ Y ¼Óµµ·Î ȸÀü½ÃÅ°°í ½Í´Ù,¡± ¶Ç´Â ¡°ÀÌ ÇÁ·ÎÅäÄÝ°ú Åë½ÅÇÏ°í ½Í´Ù¡±¿Í °°ÀÌ ÆòÀÌÇÑ ¾ð¾î·Î ÀÎÅÍÆäÀ̽º¸¦ ÅëÇØ È¸·Î¸¦ ¼³°èÇÒ ¼ö ÀÖ°Ô Çß´Ù.

º¹ÀâÇÑ PCB ¼³°è Äõ¸®´Â LLMÀÌ ÀÚµ¿À¸·Î À̸¦ ÀνÄÇÏ¿© ´õ ´Ü¼øÇÑ ÀÛ¾÷À¸·Î ³ª´©¾î ó¸®ÇÑ´Ù.

¶ÇÇÑ, º¹ÀâÇÑ ¼³°è°¡ ÇÊ¿äÇÑ °í°´Àº »ý¼ºÇü AI Áö¿ø PCB ¼³°è¸¦ ÇÁ·ÎÅäŸÀÌÇÎ Àü¿¡ Ç÷¹½¬Å×Å© ÆÀÀÇ °ËÅ並 ¹ÞÀ» ¼ö ÀÖ´Ù.

ȸ»ç´Â ÀÌ·Î ÀÎÇØ º¸Åë »ç¶÷ÀÌ PCB ¼³°è¸¦ ¿Ï¼ºÇÏ´Â µ¥ °É¸®´Â 6~8ÁÖÀÇ ±â°£À» Æò±ÕÀûÀ¸·Î 80% ÀÌ»ó ´ÜÃàÇß´Ù°í ¹àÇû´Ù.

Ãʺ¸ÀÚµéÀÇ »ý»ê¼º Çâ»óÀÌ Æ¯È÷ µÎµå·¯Áö¸ç, À̴ ȸ»çÀÇ Á¦Ç° ½ÃÀåÀ» È®ÀåÇÏ´Â È¿°ú¸¦ °¡Á®¿Ô´Ù.

Ç÷¹½¬Å×Å©´Â ¶ÇÇÑ °³º° °í°´ÀÇ ¸ÂÃã PCB¿¡ ´ëÇÑ Æ¯Á¤ ¿ä±¸¸¦ ÀÌÇØÇϱâ À§ÇØ Á÷¿øµéÀÌ Á÷Á¢ »óÈ£ÀÛ¿ëÇÒ ÇÊ¿ä ¾øÀÌ ÁÖ·Î »ý¼ºÇü AI ±â¹Ý 꺿À» ÅëÇØ ÀÌ ÇÁ·Î¼¼½º¸¦ ¾Æ¿ô¼Ò½ÌÇÏ¿© »ó´çÇÑ ºñ¿ë Àý°¨À» ÀÌ·ç¾ú´Ù.


È°¿ë »ç·Ê 3: º¹ÀâÇÑ ¼³°è µµ±¸¿ÍÀÇ ÀÚ¿¬¾î ÀÎÅÍÆäÀ̽º·Î¼­ÀÇ LLM È°¿ë
LLMÀÇ ¾ð¾îÀû À¯Ã¢¼º°ú »ç¿ëÀÚÀÇ »óÈ£ÀÛ¿ëÀÌ ¿ëÀÌÇÏ´Ù´Â Á¡Àº Á¦Ç° ¼³°è ÇÁ·Î¼¼½º¿¡¼­ °í±Þ ½Ã¹Ä·¹ÀÌ¼Ç ¹× ¿£Áö´Ï¾î¸µ ½Ã½ºÅÛ°úÀÇ ÇÁ·±Æ®¿£µå ÀÎÅÍÆäÀ̽º·Î È°¿ëÇÒ ¼ö ÀÖ´Â ¶Ç ´Ù¸¥ »ç¿ë »ç·Ê¸¦ Á¦°øÇÑ´Ù.

Áö¸à½º(Siemens)ÀÇ »ê¾÷ ºÎ¼­´Â ÃÖ±Ù ÀÚ»çÀÇ °í±Þ ¿£Áö´Ï¾î¸µ ¹× ¼³°è ¼ÒÇÁÆ®¿þ¾î¿¡ »ý¼ºÇü AI ±â´ÉÀ» Ãß°¡ÇÏ¿© ´õ ´Ù¾çÇÑ »ç¿ëÀÚÃþÀÌ ÀÌ ½Ã½ºÅÛµé°ú »óÈ£ÀÛ¿ëÇÒ ¼ö ÀÖ°Ô Çß´Ù.

ÀÌ ½Ã½ºÅÛ Áß ÇϳªÀÎ ½É¼¾ÅÍ(Simcenter)´Â Á¦Ç°À̳ª °øÁ¤ÀÇ ¹°¸®Àû µ¿ÀÛÀ» Á¤È®ÇÏ°Ô ¸ðµ¨¸µÇÒ ¼ö ÀÖ´Â ½Ã¹Ä·¹ÀÌ¼Ç ÆÐÅ°Áö·Î, ¹°¸®Àû ÇÁ·ÎÅäŸÀÔ°ú Å×½ºÆ® ȯ°æÀ» µðÁöÅзΠ´ëüÇÒ ¼ö ÀÖ°Ô ÇÑ´Ù.

°­·ÂÇÑ ±â´ÉÀ» °®Ãß°í ÀÖÁö¸¸, ½É¼¾ÅÍ´Â ÀϹÝÀûÀ¸·Î Ãʱ⠼³Á¤¿¡ ¸¹Àº ½Ã°£ÀÌ °É¸®¸ç, ±¤¹üÀ§ÇÑ »ç¿ëÀÚ ±³À°ÀÌ ÇÊ¿äÇÏ°í, °á°ú¸¦ Çؼ®ÇÏ´Â µ¥´Â Àü¹®ÀûÀÎ Áö½ÄÀÌ ¿ä±¸µÈ´Ù.

Áö¸à½º´Â ÀÌ µµ±¸¿¡ »ý¼ºÇü AI ±â¹Ý »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º¸¦ °áÇÕÇÏ¿© ÇÏÀ̽ɼ¾ÅÍ(HiSimcenter)¸¦ °³¹ßÇß´Ù.

ÇÏÀ̽ɼ¾Åʹ ƯÁ¤ ÀÛ¾÷¿¡ °¡Àå ÀûÇÕÇÑ ÄÄÇ»ÅÍ Áö¿ø ¿£Áö´Ï¾î¸µ µµ±¸¸¦ ¼±ÅÃÇÏ´Â °£´ÜÇÑ Áú¹®¿¡ ´äº¯Çϰųª, Á¦Ç° ¿ä±¸»çÇ×À» ÀÔ·ÂÇØ ±Ô°Ý¿¡ ¸Â´Â ¼³°è¸¦ Á÷Á¢ »ý¼ºÇÏ´Â ¿ÏÀü ÀÚµ¿È­µÈ »ý¼ºÇü ¼³°è ±â´ÉÀ» ½ÇÇàÇÏ´Â µî ´Ù¾çÇÑ ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ´Ù.

ÀÌ ÃªGPT ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀº º¹ÀâÇÑ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» ¼³Á¤ÇÏ°í ½ÇÇàÇÏ´Â µ¥ µµ¿òÀ» ÁÖ¾î ¸ðµ¨¸µ È¿À²¼ºÀ» 50% ÀÌ»ó Çâ»ó½ÃÄ×´Ù.

¹°·Ð ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ±¸ÃàÇÏ´Â °ÍÀº ½¬¿î ÀÛ¾÷ÀÌ ¾Æ´Ï´Ù.

ÇÏÀ̽ɼ¾Å͸¦ °³¹ßÇÑ Áö¸à½ºÀÇ ¿£Áö´Ï¾îµéÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â ±âº» µ¥ÀÌÅÍÀÇ Á߿伺À» ÀνÄÇß°í, ÇÏÀ̺긮µå Àü¹® ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¶§ À̸¦ È®º¸ÇÏ´Â °ÍÀÌ ÁÖ¿ä °úÁ¦¶ó°í ÆÇ´ÜÇß´Ù.

»ý¼ºÇü AI¸¦ »ç¿ëÇÏ¿© Ãß°¡ÀûÀÎ Àü¹® ¾ÖÇø®ÄÉÀ̼ÇÀ» °³¹ßÇÏ·Á¸é ÇнÀ µ¥ÀÌÅÍ°¡ Áß¿äÇÒ °ÍÀ¸·Î ¿¹»óÇÏ¿©, Áö¸à½º´Â ÁÖ¿ä ¿£Áö´Ï¾î¸µ ÀÛ¾÷¿¡ ´ëÇØ ¼±Á¤µÈ Á÷¿øµé¿¡°Ô ƯÁ¤ ÀÛ¾÷°ú °ü·ÃµÈ µ¥ÀÌÅÍ Ç°ÁúÀ» Æò°¡ÇÏ´Â ±³À°À» ½Ç½ÃÇß´Ù.

Áö¸à½º´Â ÇÏÀ̽ɼ¾ÅÍ °³¹ßÀ» À§ÇØ ¼Ò¼öÀÇ Àü¹®°¡·Î ±¸¼ºµÈ ÆÀÀ» ¼±ÅÃÇß´Ù.

ÀÌ Áß¾Ó ÁýÁᫎ Á¢±Ù¹ýÀ» ÅëÇØ Àü¹®°¡ ÆÀÀº »ý¼ºÇü AIÀÇ Ãâ·Â Ç°Áú°ú Áö¸à½º Á¤Ã¥ ¹× ¿£Áö´Ï¾î¸µ Ç¥ÁØ°úÀÇ ÀÏ°ü¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖ´Ù.

±×·¸´Ù¸é, ÀÌ·¯ÇÑ »çÇ×µéÀÌ ½Ã»çÇÏ´Â ¹Ù´Â ¹«¾ùÀϱî?

--

°ú´ë±¤°í¸¦ ³Ñ¾î, »ý¼ºÇü AI°¡ ±â¾÷ÀÇ Çõ½Å°ú °³¹ß ÇÁ·Î¼¼½º¿¡ ½ÇÁúÀûÀÎ ÀÌÁ¡À» °¡Á®´ÙÁÙ ¼ö ÀÖ´Ù´Â °ÍÀÌ´Ù!

°ü¸®ÀÚµéÀº ¾Õ¼­ ¼³¸íÇÑ »ý¼ºÇü AIÀÇ ¼¼ °¡Áö È°¿ë ¹æ½ÄÀÌ ÀÚ»ç »ê¾÷°ú Çõ½Å Àü·«¿¡ ¾î¶»°Ô ¸Â¾Æ¶³¾îÁö´ÂÁö °í·ÁÇØ¾ß ÇÑ´Ù.

¶ÇÇÑ, Á¶Á÷Àº ±â´ë »çÇ×°ú ¿øÇÏ´Â °á°ú¿¡ ´ëÇÑ ¸íÈ®ÇÑ ÀÌÇØ°¡ ÇÊ¿äÇϸç, ´Ù¾çÇÑ Çõ½Å ÀÛ¾÷¿¡´Â °¢±â ´Ù¸¥ Á¢±Ù ¹æ½ÄÀÌ ÇÊ¿äÇÏ´Ù´Â Á¡À» ÀÎÁöÇØ¾ß ÇÑ´Ù.

ÀϹÝÀûÀ¸·Î »ç¿ë °¡´ÉÇÑ »ý¼ºÇü AI µµ±¸ÀΠêGPT³ª ¹ÌµåÀú´Ï(Midjourney)´Â µðÀÚÀÎ ±â¾÷µéÀÌ °æÇèÇÑ ¹Ù¿Í °°ÀÌ Ã¢ÀǼº°ú ¾ÆÀ̵ð¾î ¹ß»ó¿¡ ¸Å¿ì ÀûÇÕÇÏ´Ù.

ÇÕ¼º Æ丣¼Ò³ª¿Í ÇÔ²² °³³äÀ» °ËÁõÇÏ´Â °Í°ú °°Àº º¸´Ù ÁýÁßµÈ ¾ÖÇø®ÄÉÀ̼ǿ¡´Â, »çÀü ÇнÀµÈ ¸ðµ¨À» ƯÁ¤ ¸Æ¶ô¿¡ ´ëÇÑ ÇнÀ µ¥ÀÌÅÍ·Î °­È­ÇØ¾ß ÇÑ´Ù.

ÇнÀ µ¥ÀÌÅÍÀÇ ¾ç, ´Ù¾ç¼º, ±×¸®°í Ç°ÁúÀº ½Å·Ú¸¦ Á¤ÀÇÇϸç ƯÁ¤ ¸Æ¶ôÀ̳ª ½ÃÀå ºÎ¹®À» ´Ù·ç´Â µ¥ ÀÖ¾î »ý¼ºÇü AI Ãâ·Â Ç°Áú¿¡ Å« ¿µÇâÀ» ¹ÌÄ£´Ù.

°á°ú¿¡ ´ëÇÑ ¸Å¿ì ³ôÀº Á¤È®¼º°ú ½Å·Ú°¡ ÇʼöÀûÀÎ °æ¿ì, ±âÁ¸ÀÇ ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû ¹× Àü¹®°¡ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÏ´Ù.

Áö¸à½º¿Í Ç÷¹½¬Å×Å©°¡ ÀÔÁõÇßµíÀÌ, LLMÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ È¿À²ÀûÀÎ »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ¾î µµ¸ÞÀÎ Àü¹® Áö½ÄÀº ÀÖÀ¸³ª ½Ã¹Ä·¹ÀÌ¼Ç ½Ã½ºÅÛ¿¡´Â Àͼ÷ÇÏÁö ¾ÊÀº ´õ ¸¹Àº »ç¿ëÀÚµéÀÌ º¹ÀâÇÑ ¿£Áö´Ï¾î¸µ ¶Ç´Â °úÇÐ ¿¬±¸ ÀÛ¾÷¿¡ ÀÌ µµ±¸¸¦ »ç¿ëÇÒ ¼ö ÀÖ°Ô ÇÑ´Ù.

»ç¿ëÀÚ°¡ ½Ã¹Ä·¹ÀÌ¼Ç Àü¹®°¡ÀÇ µµ¿ò ¾øÀÌ Àü¹®°¡ ½Ã½ºÅÛÀ» Á÷Á¢ ´Ù·ê ¼ö ÀÖÀ» ¶§, ´Ü¼øÇÑ °ËÁõÀÌ ¾Æ´Ï¶ó ¹ß°ßÀ» À§ÇÑ µµ±¸·Î È°¿ëÇÏ¿© ´õ ¸¹Àº ½Ã¹Ä·¹À̼ÇÀ» ½ÇÇàÇÒ °¡´É¼ºÀÌ ³ô´Ù.

¸¶Áö¸·À¸·Î, ÀÌ ±â¼úµéÀÌ ºü¸£°Ô ¹ßÀüÇÏ°í ÀÖ´Â »óȲ¿¡¼­ Á¶Á÷ ³» ÅëÇÕ ¹®Á¦°¡ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ´Ù.

Áö¸à½º°¡ º¸¿©ÁÖ¾úµíÀÌ, ³»ºÎ °³¹ß°ú Àü·«Àû ÆÄÆ®³Ê½Ê¿¡ Àü·«ÀûÀ¸·Î ÅõÀÚÇÏ´Â »óÇâ½Ä Á¢±Ù ¹æ½ÄÀº ÅëÇÕÀ» À§ÇÑ ÇÑ °¡Áö ¹æ¹ýÀÌ´Ù.

±×·¯³ª ÀÌ·¯ÇÑ À̴ϼÅƼºê¿¡´Â ½Ã°£ÀÌ ¼Ò¿äµÇ¸ç, ±¸Çö Áö¿¬À¸·Î ÀÎÇØ °¡¿ë ½ÃÁ¡¿¡´Â ±â¼úÀÌ ÀÌ¹Ì ±¸½ÄÀÏ °¡´É¼ºÀÌ ÀÖ´Ù.

µû¶ó¼­, ¿¬±¸ÁøÀº ÆÀ°ú °³ÀÎÀÌ ÀûÇÕÇÑ µµ±¸¸¦ ¼±ÅÃÇÏ°í, »ç¿ëÇÏ°í, ±¸ÃàÇÒ ¼ö ÀÖ´Â ÇÏÇâ½Ä Á¢±Ù¹ýÀ» ÅëÇÑ ¹ÎÁÖÀû Á¢±ÙÀ» ÃßõÇÑ´Ù.

¿¬±¸¿¡ µû¸£¸é, ÀÌ µÎ °¡Áö Á¢±Ù ¹æ½ÄÀ» °áÇÕÇϸé Á¶Á÷ÀÌ ´õ ³ªÀº µ¥ÀÌÅÍ¿Í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Àü·«ÀûÀ¸·Î ±¸ÃàÇϸ鼭µµ µ¿Àû ½ÇÇèÀ» °¡´ÉÇÏ°Ô ÇÒ ¼ö ÀÖ´Ù.

- MIT ½½·Ð ¸Å´ÏÁö¸ÕÆ® ¸®ºä(MIT Sloan Management Review), 2024³â °¡À» È£, "When Generative AI Meets Product Development" ÀúÀÚ: ÅÍÄ¿ J. ¸Å¸®¾ð(Tucker J. Marion), ¸¶Èåµð ½º·ç¾î(Mahdi Srour), ÇÁ·©Å© ÇÊ·¯(Frank Piller). © 2024 ¸Å»çÃß¼¼Ã÷ °ø°ú´ëÇб³(Massachusetts Institute of Technology).