Innovation in Non-Invasive Diagnostics: The Emergence of the Nanoneedle Patch
Beyond the Limitations of Traditional Biopsy
In cancer diagnostics, tissue biopsy has long been considered the ¡°gold standard¡± for definitive diagnosis. However, in practice, it involves tissue excision or the insertion of large needles, causing patients significant pain, scarring, bleeding, and risk of infection. In particularly sensitive organs such as the brain, lungs, and pancreas, repeated biopsies are difficult and sometimes even dangerous. Diagnostic delays while waiting for biopsy results can negatively affect prognosis. Thus, while traditional biopsies offer diagnostic accuracy, they pose significant limitations in efficiency and patient comfort. For years, the medical community has sought technologies that can obtain samples quickly and safely, without tissue damage.
A Patch Made of Ultra-Fine Silicon Needles
A research team at King¡¯s College London has responded to this need by embedding millions of ultra-thin silicon nanoneedles (tens to hundreds of nanometers in diameter) into a thin, plaster-like patch. These nanoneedles, roughly 1,000 times thinner than a human hair, gently penetrate the extracellular membrane simply by being placed on the tissue surface, collecting various biomolecules such as lipids, proteins, and mRNA. Since no incision or deep insertion is required, there is little pain or bleeding, and the patch demonstrates high biocompatibility with minimal side effects. This enables clinicians to obtain high-precision molecular samples without damaging the tissue, representing a transformative advancement in cancer diagnostics.
AI-Powered Real-Time Diagnosis
The collected molecular data is precisely analyzed using high-performance mass spectrometry and AI-based algorithms, enabling diagnosis within 20 minutes. Not only can the presence of cancer be detected, but tumor type and tissue grading can also be assessed. Compared to traditional biopsy processes that take several days, this rapid turnaround allows for real-time application even during surgery. For instance, during brain surgery, the patch can be applied to suspicious lesions, and the results used to immediately adjust the surgical scope and direction, increasing success rates while minimizing unnecessary tissue damage.
Repeatable Molecular Mapping
Because the nanoneedle patch does not disrupt the tissue, it can be applied repeatedly to the same area, allowing for continuous collection of molecular samples. This enables visualization of molecular changes over time—before and after treatment, during recovery, or prior to recurrence—forming what is known as a ¡°molecular map.¡± Such a map allows clinicians to observe important biological changes such as tumor growth, drug response, and recurrence potential over time, and to develop more precise, personalized treatment strategies based on these insights.
Preclinical Achievements
In preclinical studies, nanoneedle patches were applied to 23 human and animal brain tumor samples. The patches accurately distinguished various tumor types, such as glioblastoma and meningioma, with results produced within 20 minutes. This achievement goes beyond the role of a simple diagnostic tool, demonstrating the potential of spatial biology: the ability to simultaneously analyze and map the spatial and temporal molecular information of the same tissue. It marks a critical first step toward molecular-based diagnostic tools that can be used immediately in operating rooms.
Scalable Manufacturing Technology
This technology is manufactured using semiconductor lithography processes, allowing for mass production using the same methods as computer chips. This lowers manufacturing costs and reduces barriers to clinical adoption. Additionally, the patch can be easily integrated into various medical devices such as bandages, endoscopic tips, and contact lenses, enabling application to the oral cavity, respiratory system, skin, brain, and other organs. Moreover, the patch holds promise for diagnosing conditions like Alzheimer¡¯s disease and autoimmune disorders, greatly broadening its potential applications.
Challenges for Clinical Implementation
Currently, the technology remains in the preclinical stage. Moving forward, it must demonstrate safety and efficacy in human clinical trials (Phases 1 and 2). Institutional groundwork—including AI algorithm validation, medical device approval, insurance reimbursement codes, and incorporation into diagnostic guidelines—is also essential. Furthermore, it will require customized designs tailored to each disease, refinement of production processes, and the establishment of training systems to ensure healthcare professionals can use the technology effectively in clinical settings.
A Paradigm Shift in Cancer Diagnostics
In conclusion, the nanoneedle patch—characterized by non-invasiveness, painlessness, real-time analysis, and repeatability—is poised to revolutionize the very approach to cancer diagnostics. Patients will experience less pain and anxiety while undergoing efficient testing, and clinicians will be able to design more accurate treatment strategies through molecular-based real-time diagnostics in just 20 minutes. This will be particularly valuable in surgical settings, ultimately improving patient outcomes and quality of life. If clinical implementation is realized within the next five years, it could drive a broad transformation of diagnostic and therapeutic systems—not only for cancer but also for intractable diseases—toward precision and personalized medicine, ushering in a new era in healthcare.
* Reference
Nature Nanotechnology – June 16, 2025, "Nanoneedle patch offers painless alternative to traditional cancer biopsies," King¡¯s College London.
ºñħ½À Áø´Ü Çõ½Å, ³ª³ë‑´Ïµé(nanoneedle) ÆÐÄ¡ÀÇ µîÀå
ÀüÅë »ý°ËÀÇ ÇѰ踦 ³Ñ¾î
¾Ï Áø´Ü¿¡¼ Á¶Á÷ »ý°ËÀº ¿À·§µ¿¾È ¡®È®½ÇÇÑ Áø´Ü ¼ö´Ü¡¯À¸·Î ¿©°ÜÁ® ¿Ô´Ù. ±×·¯³ª ½ÇÁ¦·Î´Â Á¶Á÷ Àý°³³ª ±½Àº ¹Ù´Ã »ðÀÔÀÌ ¼ö¹ÝµÇ¾î ȯÀÚ¿¡°Ô »ó´çÇÑ ÅëÁõ°ú ÈäÅÍ, ÃâÇ÷, °¨¿° À§ÇèÀ» ¾È±ä´Ù. ƯÈ÷ ³ú, Æó, ÃéÀå°ú °°Àº ¹Î°¨ÇÑ Àå±â¿¡¼´Â ¹Ýº¹ÀûÀÎ °Ë»ç ÀÚü°¡ ¾î·Æ°í ½ÉÁö¾î À§ÇèÇϱâ±îÁö ÇÏ´Ù. Áø´Ü °á°ú¸¦ ±â´Ù¸®´À¶ó Ä¡·á °³½Ã°¡ Áö¿¬µÉ ¼ö ÀÖ°í, ÀÌ´Â °á±¹ ¿¹ÈÄ¿¡µµ Á÷Á¢ÀûÀ¸·Î ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ£´Ù. ÀÌó·³ ÀüÅë »ý°ËÀº Áø´ÜÀÇ ¾ÈÁ¤¼º¿¡´Â °Á¡À» º¸À̳ª, ±× È¿À²¼º°ú ȯÀÚ ÆíÀǼº¿¡´Â Å« ÇѰ踦 Áö´Ï°í ÀÖÀ¸¸ç, ÀÇ·á ÇöÀå¿¡¼´Â ¿À·§µ¿¾È Á¶Á÷ ¼Õ»ó ¾øÀÌ ºü¸£°í ¾ÈÀüÇÏ°Ô °Ëü¸¦ È®º¸ÇÒ ¼ö ÀÖ´Â ±â¼ú¿¡ ´ëÇÑ °¥¸ÁÀÌ Áö¼ÓµÇ¾î ¿Ô´Ù.
Ãʹ̼¼ ½Ç¸®ÄÜ ¹Ù´ÃÀÌ ¸¸µç ÆÐÄ¡
Å·½º Ä®¸®Áö ·±´ø(King¡¯s College London) ¿¬±¸ÆÀÀº ÀÌ·¯ÇÑ Çʿ信 ÀÀ´äÇÏ¿© ¹«·Á ¼ö¹é¸¸ °³ÀÇ ¼ö½Ê~¼ö¹é ³ª³ë¹ÌÅÍ ½Ç¸®ÄÜ ³ª³ë‑´ÏµéÀ» Çöó½ºÅÍ ÇüÅÂÀÇ ¾ãÀº ÆÐÄ¡¿¡ ÁýÀûÇÏ¿´´Ù. ¸Ó¸®Ä«¶ôº¸´Ù ¾à 1,000¹è °¡´Â ÀÌ ³ª³ë‑´ÏµéÀº Á¶Á÷ Ç¥¸é¿¡ °¡º±°Ô ºÙÀÌ´Â °Í¸¸À¸·Îµµ ¼¼Æ÷ ¿Ü¸·À» ºÎµå·´°Ô °üÅëÇÏ¿© ÁöÁú, ´Ü¹éÁú, mRNA µî ´Ù¾çÇÑ »ýü ºÐÀÚµéÀ» Æ÷ÁýÇÑ´Ù. Àý°³³ª ±íÀº »ðÀÔÀ» ÇÏÁö ¾ÊÀ¸¹Ç·Î ÅëÁõ°ú ÃâÇ÷Àº °ÅÀÇ ¾øÀ¸¸ç, »ýüÀûÇÕ¼º ¶ÇÇÑ ³ô¾Æ ºÎÀÛ¿ë ¿ì·Á°¡ ³·´Ù. ÀÌ ÆÐÄ¡¸¦ ÅëÇØ ÀÇ·áÁøÀº Á¶Á÷À» ¼öµ¿ÀûÀ¸·Î ¼Õ»óÇÏÁö ¾Ê°íµµ °íÁ¤¹Ð ºÐÀÚ »ùÇÃÀ» ȹµæÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¾Ï Áø´ÜÀÇ º»ÁúÀ» ÀçÁ¤ÀÇÇÏ´Â Çõ½ÅÀû ÀüȯÁ¡À̶ó ÇÒ ¼ö ÀÖ´Ù.
ÀΰøÁö´É(AI) ±â¹Ý ½Ç½Ã°£ Áø´Ü
Æ÷ÁýµÈ ºÐÀÚ µ¥ÀÌÅÍ´Â °í¼º´É Áú·®ºÐ¼® Àåºñ¿Í ÀΰøÁö´É ±â¹Ý ¾Ë°í¸®ÁòÀ¸·Î Á¤±³ÇÏ°Ô ºÐ¼®µÇ¾î, 20ºÐ À̳»¿¡ ¾ÏÀÇ Á¸Àç»Ó¸¸ ¾Æ´Ï¶ó Á¾¾çÀÇ À¯Çü°ú Á¶Á÷ µî±Þ±îÁö Æò°¡ÇÒ ¼ö ÀÖ´Ù. ÀüÅë »ý°ËÀÌ ¼öÀÏ °É¸®´ø °úÁ¤°ú ºñ±³ÇÏ¸é ½Ã°£ È¿À²Àº ¸»ÇÒ °Íµµ ¾øÀ¸¸ç, 20ºÐ ³» ½Ç½Ã°£ °á°ú´Â ¼ö¼ú Áß¿¡µµ Áï½Ã Ȱ¿ë °¡´ÉÇÏ´Ù. ¿¹¸¦ µé¾î ³ú¼ö¼ú Áß ÀÇ½É º´º¯¿¡ ÆÐÄ¡¸¦ ºÎÂøÇÑ µÚ ºÐ¼® °á°ú¸¦ ¹Ý¿µÇÏ¿© ÀýÁ¦ ¹üÀ§³ª ¼ö¼ú ¹æÇâÀ» Áï°¢ Á¶Á¤ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¼ö¼ú ¼º°ø·üÀ» ³ôÀÌ°í ºÒÇÊ¿äÇÑ Á¶Á÷ ¼Õ»óÀ» ÁÙÀÌ´Â È¿°ú¸¦ °¡Á®¿Ã °ÍÀÌ´Ù.
¹Ýº¹ °¡´ÉÇÑ ºÐÀÚ Áöµµ
³ª³ë‑´Ïµé ÆÐÄ¡´Â Á¶Á÷À» °Çµå¸®Áö ¾Ê±â ¶§¹®¿¡ µ¿ÀÏ ºÎÀ§¿¡ ¿©·¯ Â÷·Ê ºÎÂøÇÑ ÈÄ ºÐÀÚ »ùÇÃÀ» Áö¼ÓÀûÀ¸·Î ¼öÁýÇÒ ¼ö ÀÖ´Ù. ÀÌ·Î ÀÎÇØ Ä¡·á ÀüÈÄ, ȸº¹±â, Àç¹ß Á÷Àü µî ´Ù¾çÇÑ ½ÃÁ¡¿¡¼ ºÐÀÚ »óÅÂÀÇ º¯È¸¦ ½Ã°¢ÀûÀ¸·Î ±â·ÏÇÒ ¼ö ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ºÐÀÚ Áöµµ(molecular map)¶ó°í ºÒ¸®´Â ½Ã°ø°£Àû ºÐ¼®ÀÌ °¡´ÉÇÏ´Ù.
¿©±â¼ ºÐÀÚ Áöµµ¶õ ȯÀÚÀÇ Æ¯Á¤ Á¶Á÷À̳ª Á¾¾çÀÌ ½Ã°£¿¡ µû¶ó ºÐÀÚÀû Ư¼ºÀÌ ¾î¶»°Ô º¯ÈÇÏ´ÂÁö¸¦ ½Ã°¢ÈÇÑ ºÐ¼® ÀڷḦ ¸»ÇÑ´Ù. ¿¹¸¦ µé¾î Ä¡·á È¿°ú°¡ ¾î¶»°Ô ³ªÅ¸³ª´ÂÁö, ¾à¹° ¹ÝÀÀÀº ¾î¶°ÇÑÁö, Àç¹ß °¡´É¼ºÀº ¾î´À Á¤µµÀÎÁö µîÀ» ½Ã°£ ¼ø¼´ë·Î º¸¿©ÁÖ´Â Á¤º¸·Î, ¸Å¿ì Á¤¹ÐÇÑ ¸ÂÃãÇü Ä¡·á ¼³°è¿¡ Áß¿äÇÑ ÀÚ·á°¡ µÈ´Ù. ÀÌ Áöµµ´Â Á¾¾çÀÇ ¼ºÀå, ¾à¹° ¹ÝÀÀ, Àç¹ß °¡´É¼º°ú °°Àº Áß¿äÇÑ »ýü º¯È¸¦ ½Ã°£ Ãà À§¿¡ °üÂûÇÏ°Ô ÇØ ÁÙ °ÍÀ̸ç, ÀÇ·áÁøÀº À̸¦ Åä´ë·Î ´õ Á¤¹ÐÇÏ°í °³ÀÎÈµÈ Ä¡·á Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ´Ù.
ÀüÀÓ»ó ´Ü°è¿¡¼ ¾òÀº ¼º°ú
ÀüÀÓ»ó ¿¬±¸¿¡¼´Â Àΰ£ ¹× µ¿¹°ÀÇ ³úÁ¾¾ç Á¶Á÷ 23°ÇÀ» ´ë»óÀ¸·Î ³ª³ë‑´Ïµé ÆÐÄ¡¸¦ Àû¿ëÇÏ¿´´Ù. ±× °á°ú ±³¸ð¼¼Æ÷Á¾°ú ¼ö¸·Á¾ µîÀÇ ´Ù¾çÇÑ Á¾¾ç À¯ÇüÀ» Á¤È®ÇÏ°Ô ±¸ºÐÇßÀ¸¸ç, ºÐ¼® °á°ú´Â 20ºÐ À̳»¿¡ µµÃâµÇ¾ú´Ù. ÀÌ ¼º°ú´Â ´Ü¼øÇÑ Áø´Ü µµ±¸¸¦ ³Ñ¾î ¡®µ¿ÀÏ Á¶Á÷ÀÇ ½Ã°ø°£Àû ºÐÀÚ Á¤º¸¸¦ µ¿½Ã¿¡ ºÐ¼®Çϰí ÁöµµÈÇÒ ¼ö ÀÖ´Ù¡¯´Â °ø°£»ý¹°ÇÐ(spatial biology) °üÁ¡ÀÇ °¡´É¼ºÀ» ÀÔÁõÇß´Ù. ¼ö¼ú½Ç¿¡¼ Áï½Ã Àû¿ë °¡´ÉÇÑ ºÐÀÚ ±â¹Ý Áø´Ü µµ±¸ÀÇ Ã¹ ¹ß°ÉÀ½ÀÌ ¸¶·ÃµÈ ¼ÀÀÌ´Ù.
È®À强 ³ôÀº Á¦Á¶ ±â¼ú
ÀÌ ±â¼úÀº ¹ÝµµÃ¼ ¸®¼Ò±×·¡ÇÇ °øÁ¤ ±â¹ÝÀ¸·Î Á¦À۵Ǿî ÄÄÇ»ÅÍ Ä¨°ú µ¿ÀÏÇÑ ¹æ½ÄÀ¸·Î ´ë·® »ý»êÀÌ °¡´ÉÇÏ´Ù. ÀÌ·Î ÀÎÇØ Á¦Á¶ ´Ü°¡¸¦ ³·Ãß°í, ÀÇ·á ÇöÀå µµÀÔ À庮À» ³·Ãâ ¼ö ÀÖ´Ù. ¶ÇÇÑ ÀÌ ÆÐÄ¡´Â ¹êµðÁö, ³»½Ã°æ ÆÁ, ÄÜÅÃÆ®·»Áî µî ´Ù¾çÇÑ ÀÇ·á±â±â¿¡ ½±°Ô ÅëÇÕµÉ ¼ö ÀÖ¾î ±¸°, È£Èí±â, ÇǺÎ, ³ú µî ¿©·¯ Àå±â·ÎÀÇ È®ÀåÀÌ ¿ëÀÌÇÏ´Ù. ´õ ³ª¾Æ°¡ ¾ËÃ÷ÇÏÀ̸ӳª ÀÚ°¡¸é¿ªÁúȯ Áø´Ü µî¿¡µµ Àû¿ë °¡´É¼ºÀÌ ÀÖ¾î, ÀÀ¿ë ¹üÀ§´Â ¸Å¿ì ±¤¹üÀ§ÇÏ´Ù.
ÀÓ»ó Àû¿ëÀ» À§ÇÑ °úÁ¦µé
ÇöÀç ±â¼úÀº ÀüÀÓ»ó ´Ü°è¿¡ ¸Ó¹°·¯ ÀÖ´Ù. ÇâÈÄ¿¡´Â ÀÎü ´ë»ó ÀÓ»ó½ÃÇè(1¡¤2»ó)¿¡¼ ¾ÈÀü¼º°ú À¯È¿¼ºÀ» ÀÔÁõÇØ¾ß ÇÑ´Ù. µ¿½Ã¿¡ ÀΰøÁö´É ¾Ë°í¸®Áò ÀÎÁõ, ÀÇ·á±â±â Çã°¡, º¸Çè ¼ö°¡ Ã¥Á¤, Áø´Ü Áöħ ¹Ý¿µ µî Á¦µµÀû ±â¹Ý ±¸Ã൵ ÇʼöÀÌ´Ù. ¶ÇÇÑ °¢ ÁúȯÀÇ Æ¯¼º¿¡ ¸Â´Â ¸ÂÃã ¼³°è¿Í »ý»ê °øÁ¤ °íµµÈ, ÀÇ·áÁøÀÇ ÇöÀå Ȱ¿ë ¿ª·® È®º¸¸¦ À§ÇÑ ±³À° ½Ã½ºÅÛ ±¸Ã൵ µ¿¹ÝµÇ¾î¾ß ÇÑ´Ù.
¾Ï Áø´ÜÀÇ ÆÐ·¯´ÙÀÓÀÌ ¹Ù²ð °ÍÀÌ´Ù
°á·ÐÀûÀ¸·Î, ³ª³ë‑´Ïµé ÆÐÄ¡´Â ºñħ½À¡¤¹«Å롤½Ç½Ã°£¡¤¹Ýº¹ °¡´ÉÀ̶ó´Â Ư¡À¸·Î ¾Ï Áø´ÜÀÇ ¹æ½Ä ÀÚü¸¦ ¹Ù²Ü °ÍÀÌ´Ù. ȯÀÚ´Â Áø´ÜÀÇ °íÅë°ú ºÒ¾ÈÀ» ´ú°í È¿À²ÀûÀÎ °Ë»ç¸¦ ¹ÞÀ» ¼ö ÀÖÀ¸¸ç, ÀÇ·áÁøÀº 20ºÐ ³» ºÐÀÚ ±â¹Ý ½Ç½Ã°£ Áø´ÜÀ» ÅëÇØ º¸´Ù Á¤È®ÇÑ Ä¡·á Àü·«À» ¼³°èÇÒ ¼ö ÀÖ´Ù. À̴ ƯÈ÷ ¼ö¼ú½Ç¿¡¼ È¿°úÀûÀÏ °ÍÀ̸ç, °á°úÀûÀ¸·Î ȯÀÚÀÇ ¿¹ÈÄ¿Í »îÀÇ ÁúÀ» Å©°Ô Çâ»ó½Ãų °ÍÀÌ´Ù. ÇâÈÄ 5³â ³» ÀÓ»ó Àû¿ëÀÌ ½ÇÇöµÈ´Ù¸é, ¾Ï»Ó ¾Æ´Ï¶ó ³Ä¡¼º Áúȯ Àü¹ÝÀÇ Áø´Ü-Ä¡·á ü°è°¡ Á¤¹ÐÇÏ°í °³ÀÎÈµÈ ÀÇ·á ÇüÅ·ΠÀüȯµÇ¸ç ÀÇ·á ÆÐ·¯´ÙÀÓ Àüü°¡ Çõ½ÅµÉ °ÍÀÌ´Ù.
* Reference
Nature Nanotechnology – June 16, 2025, "Nanoneedle patch offers painless alternative to traditional cancer biopsies," King¡¯s College London.