¸ñ·Ï

Home

åǥÁö

¶¥¼Ó¿¡ Àü±â¸¦ ÀúÀåÇÏ´Ù

Àç»ý¿¡³ÊÁö È®´ëÀÇ È帧Àº °Å½º¸¦ ¼ö ¾ø´Â ¼¼°èÀû Ãß¼¼´Ù. ±×·¯³ª ž籤°ú dz·ÂÀº ¾ðÁ¦³ª °£Ç漺À» ³»Æ÷ÇÑ´Ù. ÇØ°¡ Áö°Å³ª ¹Ù¶÷ÀÌ ¸ÜÀ¸¸é Àü·ÂÀÌ ²÷±â°í, °èÀýº° ¼ö±Þ..




Storing Electricity Underground
- Geochemical Energy Storage Using Hydroxide Value: A New Key to Long-Term Energy Storage

The Bottleneck of Renewable Energy Transition: Storage
The expansion of renewable energy is an irreversible global trend. Yet solar and wind power inherently carry intermittency. When the sun sets or the wind stops, electricity supply is cut off, and seasonal supply-demand imbalances lead to grid instability. Until now, batteries and pumped hydro storage have filled this gap, but 'lithium-based storage devices face limits in cost, lifespan, and safety', while pumped hydro has geographic constraints that make it inapplicable everywhere. This is why new solutions for long-duration or even 'seasonal storage' are needed. The emerging alternative is 'Geochemical Energy Storage (GES)'.

A New Attempt by Quidnet Energy
The U.S.-based startup 'Quidnet Energy' is a pioneer in this field, developing GES technology with commercialization targeted for 2025. The principle is simple yet powerful: inject water at high pressure into underground rock reservoirs, store it, and release it back to generate electricity when needed. Thanks to the cycle of electricity-pressure-hydropower, it is possible to 'store energy with almost no loss for up to six months'—a major advantage over existing short-term storage technologies.

Quidnet Energy is running several demonstration projects in Texas and California. For example, in 2023, a pilot plant in Texas succeeded in a 1MW-scale power storage and release test, proving that seasonal electricity storage is feasible in practice. The U.S. Department of Energy (DOE) has selected this project as a core model in its Long Duration Energy Storage (LDES) program.

Breakthrough: Stability at Medium Temperature and Pressure
Existing compressed air energy storage (CAES) or pumped hydro systems require large-scale topographical conditions, making deployment difficult. GES, however, 'operates stably under medium temperature and pressure'. Based on hydroxide reactions, it balances pressure and heat to preserve energy for long durations, with fewer issues of structural degradation or leakage.

This feature has been validated not only in laboratory studies but also in the field. In a Texas demonstration project, Quidnet Energy successfully stored and released power stably for over 90 days—clear proof of differentiation from short-term, battery-based energy storage systems (ESS). In this sense, 'seasonal-scale storage' is becoming a reality.

The Trio of Low Cost, High Efficiency, and Environmental Friendliness
The most notable advantage of GES is its cost structure. By using abundant resources such as water and rock, it avoids reliance on scarce metals like lithium, cobalt, or nickel, whose supply chains are unstable. Unlike sulfur or methanol-based auxiliary resources, it does not require additional input materials, further lowering risks.

In comparison, the installation cost of lithium ESS is around '\$300–400/kWh', whereas Quidnet Energy projects that GES technology could fall 'below \$100/kWh'. Factoring in maintenance costs, some analyses suggest up to 70% cost savings compared to lithium ESS in the long run.

From an environmental perspective, the benefits are also significant. GES avoids the ecological destruction associated with mining or refining rare metals and uses existing underground rock structures, reducing the need for massive civil engineering projects. Thus, it fulfills the three conditions of 'low cost, high efficiency, and environmental friendliness' simultaneously.

Implications for the Energy Industry and Environment
The impact of GES goes far beyond the introduction of a new storage device.

* 'Removing the bottleneck for renewable expansion': By addressing intermittency in wind and solar, it stabilizes the grid. For example, surplus summer electricity can be stored and used for winter heating demand, enabling seasonal energy balancing.

* 'Strengthening sustainability': By reducing dependence on scarce metals and using abundant resources like water and rock, it builds a resource-circulating energy model.

* 'Restructuring the industry': The emergence of a new competitor alongside batteries could reshape the ESS market. In fact, renewable energy companies in the U.S. and Europe are already expressing investment interest in GES projects, suggesting that market structures could be redefined.

Impact in Europe and Korea
GES is gaining attention not only in the U.S. but also in Europe. The European Union (EU) announced plans to increase renewable energy to 45% by 2030, but without long-duration storage, grid instability is unavoidable. Energy firms in Germany and France are benchmarking Quidnet Energy¡¯s model and are initiating underground reservoir storage projects.

Korea, too, has ambitious renewable energy expansion goals but faces limitations in land and geography for pumped hydro or large-scale battery projects. As such, GES models that utilize underground rock formations could be highly applicable in Korea, particularly in coastal rock regions along the East and South Seas.

Remaining Challenges
As GES approaches commercialization, several hurdles remain:

1. 'Scaling up demonstrations': Thus far, projects have been at the MW scale. It remains to be proven whether the same performance holds at hundreds of MW or GW scales.

2. 'Lifespan and durability': Seasonal storage has been demonstrated, but whether it can endure thousands of charge-discharge cycles required by the grid remains uncertain.

3. 'Optimizing cost structures': While raw materials are cheap, the initial costs of electrolyte synthesis and compression facilities remain high. Large-scale deployment and supply chain optimization will be necessary.

4. 'Regulations and safety certification': To be deployed in commercial grids, GES must pass international safety certifications and national energy regulations. This is the biggest barrier to transitioning from lab-scale results to commercial reliability.

Future Scenarios for Long-Term Storage
The significance of GES lies not only in being a cheaper storage technology but also in offering a 'gateway to a 100% renewable society'. For instance, surplus solar power in summer could be stored and used for winter heating needs, or wind intermittency could be balanced across seasons.

While still at an early stage, the model presented by Quidnet Energy demonstrates the potential to satisfy the three conditions of 'low cost, high efficiency, and long duration' simultaneously. Within the next decade, if this technology is commercialized, humanity could take a major step toward an era of 'electricity available anytime'—a true renewable energy society.

* Reference
Nature Communications, 2025, ¡°Intermediate-temperature K-Na/S battery with stable performance enabled by new electrolyte design,¡± Columbia University Engineering





¶¥¼Ó¿¡ Àü±â¸¦ ÀúÀåÇÏ´Ù
- ¼ö»êÈ­ °ªÀ» ÀÌ¿ëÇÑ ÁöÇÏ ÀúÀå ±â¼ú: Àå±â ¿¡³ÊÁö ÀúÀåÀÇ »õ·Î¿î ¿­¼è

Àç»ý¿¡³ÊÁö ÀüȯÀÇ º´¸ñ, ÀúÀå
Àç»ý¿¡³ÊÁö È®´ëÀÇ È帧Àº °Å½º¸¦ ¼ö ¾ø´Â ¼¼°èÀû Ãß¼¼´Ù. ±×·¯³ª ž籤°ú dz·ÂÀº ¾ðÁ¦³ª °£Ç漺À» ³»Æ÷ÇÑ´Ù. ÇØ°¡ Áö°Å³ª ¹Ù¶÷ÀÌ ¸ÜÀ¸¸é Àü·ÂÀÌ ²÷±â°í, °èÀýº° ¼ö±Þ ºÒ±ÕÇüÀº Àü·Â¸Á ºÒ¾ÈÁ¤À» ¾ß±âÇÑ´Ù. Áö±Ý±îÁö´Â ¹èÅ͸®¿Í ¾ç¼ö¹ßÀüÀÌ ÀÌ °ø¹éÀ» ¸Þ¿ö¿ÔÁö¸¸, '¸®Æ¬ ±â¹Ý ÀúÀå ÀåÄ¡´Â ºñ¿ë¡¤¼ö¸í¡¤¾ÈÀü¼ºÀÇ ÇѰè'¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, ¾ç¼ö¹ßÀüÀº ÀÔÁö Á¦¾à ¶§¹®¿¡ ¸ðµç Áö¿ª¿¡¼­ Àû¿ëÀÌ ¾î·Æ´Ù. ÀÌ ¶§¹®¿¡ »õ·Î¿î Àå±âÀúÀå(Seasonal Storage) ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ¾ú°í, ±× ´ë¾ÈÀ¸·Î ¶°¿À¸¥ °ÍÀÌ 'ÁöÈ­ÇÐÀû ¿¡³ÊÁö ÀúÀå(Geochemical Energy Storage, GES)'ÀÌ´Ù.

Äûµå³Ý ¿¡³ÊÁö(Quidnet Energy)ÀÇ »õ·Î¿î ½Ãµµ
¹Ì±¹ÀÇ ½ºÅ¸Æ®¾÷ Äûµå³Ý ¿¡³ÊÁö(Quidnet Energy)´Â ÀÌ ºÐ¾ßÀÇ ¼±µÎ ÁÖÀÚ·Î, 2025³â »ó¿ëÈ­¸¦ ¸ñÇ¥·Î GES ±â¼úÀ» °³¹ßÇϰí ÀÖ´Ù. ¿ø¸®´Â ´Ü¼øÇϸ鼭µµ °­·ÂÇÏ´Ù. ¹°À» ÁöÇÏ ¾Ï¹ÝÃþ¿¡ °í¾ÐÀ¸·Î ÁÖÀÔÇØ ÀúÀåÇϰí, ÇÊ¿äÇÒ ¶§ À̸¦ ´Ù½Ã ¹æÃâÇØ Àü·ÂÀ» »ý»êÇÏ´Â °ÍÀÌ´Ù. Àü±â-¾Ð·Â-¼ö·ÂÀÇ ¼øÈ¯ ±¸Á¶ ´öºÐ¿¡ 'ÃÖ´ë 6°³¿ù µ¿¾È ¼Õ½Ç ¾øÀÌ ¿¡³ÊÁö ÀúÀå'ÀÌ °¡´ÉÇÏ´Ù´Â Á¡ÀÌ °¡Àå Å« ÀåÁ¡À¸·Î ²ÅÈù´Ù.

Äûµå³Ý ¿¡³ÊÁö´Â ¹Ì±¹ ÅØ»ç½º¿Í ͏®Æ÷´Ï¾Æ¿¡¼­ ¿©·¯ ½ÇÁõ ÇÁ·ÎÁ§Æ®¸¦ ¿î¿µ ÁßÀÌ´Ù. ¿¹ÄÁ´ë 2023³â ÅØ»ç½ºÀÇ ÆÄÀÏ·µ Ç÷£Æ®¿¡¼­´Â ¾à 1MW ±Ô¸ðÀÇ Àü·Â ÀúÀ塤¹æÃâ ½ÇÇè¿¡ ¼º°øÇßÀ¸¸ç, ÀÌ´Â °èÀý ´ÜÀ§ Àü·Â ÀúÀåÀÌ °¡´ÉÇÏ´Ù´Â °ÍÀ» ½ÇÁ¦·Î ÀÔÁõÇß´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎ(DOE)µµ ÀÌ ÇÁ·ÎÁ§Æ®¸¦ Àü·«Àû Àå±âÀúÀå(LDES) ÇÁ·Î±×·¥ÀÇ ÇÙ½É ¸ðµ¨·Î ¼±Á¤Çß´Ù.

Á߿¡¤Á߾п¡¼­ÀÇ ¾ÈÁ¤¼ºÀ̶ó´Â µ¹ÆÄ±¸
±âÁ¸ ¾ÐÃà°ø±âÀúÀå(CAES)À̳ª ¾ç¼ö¹ßÀüÀº ´ë±Ô¸ð ÁöÇüÀû Á¶°ÇÀ» ¿ä±¸ÇØ Àû¿ë¿¡ Á¦¾àÀÌ ¸¹¾Ò´Ù. ±×·¯³ª GES´Â 'Á߿¡¤Á߾Рȯ°æ'¿¡¼­ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÑ´Ù. ¼ö»êÈ­ ¹ÝÀÀÀ» ±â¹ÝÀ¸·Î ¾Ð·Â°ú ¿­ÀÌ ±ÕÇüÀ» ÀÌ·ç¾î Àå±â°£ ¿¡³ÊÁö¸¦ º¸Á¸ÇÒ ¼ö ÀÖÀ¸¸ç, ±¸Á¶Àû ¿­È­³ª ´©¼ö ¹®Á¦°¡ Àû´Ù.

ÀÌ·¯ÇÑ Æ¯¼ºÀº ½ÇÇè½Ç ¿¬±¸¿¡¼­¸¸ÀÌ ¾Æ´Ï¶ó, ½ÇÁ¦ ÇöÀå¿¡¼­ °ËÁõµÇ°í ÀÖ´Ù. Äûµå³Ý ¿¡³ÊÁö°¡ ÅØ»ç½º¿¡¼­ ½Ç½ÃÇÑ ½ÇÁõ ÇÁ·ÎÁ§Æ®¿¡¼­´Â ¾à 90ÀÏ ÀÌ»ó ¾ÈÁ¤ÀûÀ¸·Î Àü·ÂÀ» ÀúÀ塤¹æÃâÇÏ´Â µ¥ ¼º°øÇßÀ¸¸ç, ÀÌ´Â ´Ü±â ¹èÅ͸® Áß½ÉÀÇ ESS(Energy Storage System)¿Í º»ÁúÀûÀ¸·Î Â÷º°È­µÇ´Â ¼º°ú¿´´Ù. '°èÀý ´ÜÀ§ ÀúÀå'À̶ó´Â »õ·Î¿î ¿µ¿ªÀÌ Çö½ÇÈ­µÇ°í ÀÖ´Â °ÍÀÌ´Ù.

Àúºñ¿ë¡¤°íÈ¿À²¡¤È¯°æÄ£È­¼ºÀÇ »ï¹ÚÀÚ
GESÀÇ °¡Àå Å« ÀåÁ¡Àº ºñ¿ë ±¸Á¶´Ù. ¹°°ú ¾Ï¹ÝÀ̶ó´Â ÈçÇÑ ÀÚ¿øÀ» Ȱ¿ëÇϱ⠶§¹®¿¡ ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌó·³ °ø±Þ¸ÁÀÌ ºÒ¾ÈÁ¤ÇÑ Èñ¼Ò ±Ý¼ÓÀ» ÀÇÁ¸ÇÒ Çʿ䰡 ¾ø´Ù. ¶ÇÇÑ È²À̳ª ¸Þź¿Ã°ú °°Àº ºÎ°¡ ÀÚ¿øÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê¾Æ, °ø±Þ¸Á ¸®½ºÅ©°¡ Å©°Ô ÁÙ¾îµç´Ù.

¸®Æ¬ ESSÀÇ °æ¿ì ¼³Ä¡ ´Ü°¡°¡ ¾à 300\~400´Þ·¯/kWh ¼öÁØÀε¥ ¹ÝÇØ, Äûµå³Ý ¿¡³ÊÁö´Â GES ±â¼úÀÌ '100´Þ·¯/kWh ÀÌÇÏ'·Î ¶³¾îÁú ¼ö ÀÖ´Ù°í Àü¸ÁÇÑ´Ù. À¯Áöº¸¼ö ºñ¿ë±îÁö °í·ÁÇϸé Àå±âÀûÀ¸·Î´Â ¸®Æ¬ ESS ´ëºñ ÃÖ´ë 70%ÀÇ ºñ¿ë Àý°¨ÀÌ °¡´ÉÇÏ´Ù´Â ºÐ¼®µµ ÀÖ´Ù.

¶ÇÇÑ È¯°æ Ãø¸é¿¡¼­µµ ÀåÁ¡ÀÌ Å©´Ù. ±¤»ê ä±¼À̳ª Èñ¼Ò±Ý¼Ó Á¤Á¦ °úÁ¤¿¡¼­ ¹ß»ýÇϴ ȯ°æ ÆÄ±«°¡ Àû°í, ±âÁ¸ÀÇ ÁöÇÏ ¾Ï¹Ý ±¸Á¶¸¦ Ȱ¿ëÇϱ⠶§¹®¿¡ Ãß°¡ÀûÀÎ ´ë±Ô¸ð Åä¸ñ°ø»ç°¡ ÇÊ¿ä ¾ø´Ù. µû¶ó¼­ 'Àúºñ¿ë¡¤°íÈ¿À²¡¤È¯°æÄ£È­¼º'À̶ó´Â ¼¼ °¡Áö Á¶°ÇÀ» µ¿½Ã¿¡ ÃæÁ·ÇÏ´Â °ÍÀÌ´Ù.

¿¡³ÊÁö »ê¾÷°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ÀǹÌ
GES°¡ ÁÖ´Â ÆÄ±Þ·ÂÀº ´Ü¼øÈ÷ »õ·Î¿î ÀúÀå ±â¼úÀÇ µîÀå¿¡ ±×Ä¡Áö ¾Ê´Â´Ù.

* 'Àç»ý¿¡³ÊÁö È®´ëÀÇ º´¸ñ ÇØ¼Ò': dz·Â¡¤Å¾籤 ¹ßÀü¼ÒÀÇ °£Ç漺À» º¸¿ÏÇØ Àü·Â¸ÁÀ» ¾ÈÁ¤È­ÇÑ´Ù. ƯÈ÷ ¿©¸§Ã¶ À׿© Àü·ÂÀ» °Ü¿ïö ³­¹æ ¼ö¿ä¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ¾î °èÀý ´ÜÀ§ Àü·Â ±ÕÇüÀ» °¡´ÉÇÏ°Ô ÇÑ´Ù.

* 'Áö¼Ó°¡´É¼º °­È­': Èñ¼Ò ±Ý¼Ó ä±¼À» ÁÙÀ̰í, ¹°°ú ¾Ï¹Ý °°Àº dzºÎÇÑ ÀÚ¿øÀ» Ȱ¿ëÇØ ÀÚ¿ø¼øÈ¯Çü ¿¡³ÊÁö ¸ðµ¨À» ±¸ÃàÇÑ´Ù.

* '»ê¾÷ ±¸Á¶ º¯È­': ¹èÅ͸® Áß½ÉÀÇ ¿¡³ÊÁöÀúÀå½Ã½ºÅÛ ½ÃÀå¿¡ »õ·Î¿î °æÀï ÃàÀÌ µîÀåÇÔÀ¸·Î½á, ±â¾÷¡¤ÅõÀÚ ±¸Á¶µµ º¯È­ÇÒ ¼ö ÀÖ´Ù. ½ÇÁ¦·Î ¹Ì±¹°ú À¯·´ÀÇ Àç»ý¿¡³ÊÁö ±â¾÷µéÀº ÀÌ¹Ì GES ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚ Àǻ縦 ¹àÈ÷¸ç, ½ÃÀåÀÇ ÆÇµµ°¡ ÀçÆíµÉ °¡´É¼ºÀÌ Ä¿Áö°í ÀÖ´Ù.

À¯·´°ú Çѱ¹¿¡¼­ÀÇ ÆÄ±Þ È¿°ú
GES´Â ¹Ì±¹»Ó ¾Æ´Ï¶ó À¯·´¿¡¼­µµ °ü½ÉÀ» ¹Þ°í ÀÖ´Ù. À¯·´¿¬ÇÕ(EU)Àº 2030³â±îÁö Àç»ý¿¡³ÊÁö ºñÁßÀ» 45%±îÁö ³ôÀÌ´Â °èȹÀ» ¹ßÇ¥Çߴµ¥, Àå±âÀúÀå ±â¼úÀÌ ¾øÀ¸¸é Àü·Â¸Á ºÒ¾ÈÁ¤À» ÇÇÇÒ ¼ö ¾ø´Ù. µ¶Àϰú ÇÁ¶û½ºÀÇ ÀϺΠ¿¡³ÊÁö ±â¾÷Àº Äûµå³Ý ¿¡³ÊÁöÀÇ ¸ðµ¨À» º¥Ä¡¸¶Å·Çϸç, ÁöÇÏ ¾Ï¹Ý ÀúÀå ÇÁ·ÎÁ§Æ®¸¦ ÃßÁøÇϰí ÀÖ´Ù.

Çѱ¹ ¿ª½Ã ³ôÀº Àç»ý¿¡³ÊÁö È®´ë ¸ñÇ¥¸¦ ¼¼¿ì°í ÀÖÀ¸³ª, ±¹Åä Á¦¾àÀ¸·Î ¾ç¼ö¹ßÀüÀ̳ª ´ëÇü ¹èÅ͸® ÇÁ·ÎÁ§Æ®¿¡ ÇѰ谡 ÀÖ´Ù. µû¶ó¼­ ÁöÇÏ ¾Ï¹Ý Ȱ¿ëÇü GES ¸ðµ¨Àº Çѱ¹ÀÇ ÁöÁú ȯ°æ¿¡µµ Àû¿ë °¡´É¼ºÀÌ Å©¸ç, ƯÈ÷ µ¿Çؾȡ¤³²ÇؾÈÀÇ ¾Ï¹Ý Áö´ë¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀÌ °ËÅäµÇ°í ÀÖ´Ù.

³Ñ¾î¾ß ÇÒ °úÁ¦µé
»ó¿ëÈ­¸¦ ¾ÕµÎ°í ÀÖ´Â ¸¸Å­, GES¿¡µµ ºÐ¸íÇÑ °úÁ¦°¡ ³²¾Æ ÀÖ´Ù.

1. '½ÇÁõ ±Ô¸ð È®´ë': Áö±Ý±îÁö´Â ¼ö MW±Þ ÇÁ·ÎÁ§Æ®¿´Áö¸¸, ¼ö¹é MW\~GW±Þ ´ëÇü ÀúÀåÀ¸·Î È®´ëÇßÀ» ¶§ ¼º´É À¯Áö°¡ °¡´ÉÇÑÁö È®ÀÎÀÌ ÇÊ¿äÇÏ´Ù.

2. '¼ö¸í°ú ¾ÈÁ¤¼º': °èÀý ´ÜÀ§ ÀúÀåÀº °¡´ÉÇÏ´Ù°í ÀÔÁõµÇ¾úÀ¸³ª, ¼öõ ȸ ÀÌ»óÀÇ Ãæ¹æÀüÀÌ ÇÊ¿äÇÑ Àü·Â¸Á Á¶°Ç¿¡¼­ ¾ó¸¶³ª ¿À·¡ ¹öÆ¿ ¼ö ÀÖÀ»Áö´Â ¾ÆÁ÷ ºÒÈ®½ÇÇÏ´Ù.

3. 'ºñ¿ë ±¸Á¶ ÃÖÀûÈ­': Ãʱâ ÀüÇØÁú¡¤¾ÐÃà ¼³ºñ ºñ¿ëÀÌ ³ô¾Æ »ó¿ëÈ­ Ãʱ⿡´Â °æÁ¦¼ºÀÌ ¶³¾îÁú ¼ö ÀÖ´Ù. µû¶ó¼­ ´ë·® ¼³Ä¡¿Í °ø±Þ¸Á ÃÖÀûÈ­°¡ ÇʼöÀûÀÌ´Ù.

4. '±ÔÁ¦¿Í ¾ÈÀü ÀÎÁõ': ´ëÇü ÀúÀå ÀåÄ¡°¡ »ó¾÷¿ë Àü·Â¸Á¿¡ ÅõÀԵǷÁ¸é, ±¹Á¦ ¾ÈÀü ÀÎÁõ°ú °¢±¹ÀÇ Àü·Â ±ÔÁ¦¸¦ Åë°úÇØ¾ß ÇÑ´Ù. ÀÌ´Â ½ÇÇè½Ç ´Ü°è¿¡¼­ »ó¾÷Àû ½Å·Ú¼ºÀ¸·Î ³Ñ¾î°¡´Â °¡Àå Å« À庮ÀÌ´Ù.

¹Ì·¡ÀÇ Àå±â ÀúÀå ½Ã³ª¸®¿À
GESÀÇ ÀÇÀÇ´Â ´Ü¼øÈ÷ °ª½Ñ ÀúÀå ±â¼úÀÇ µîÀåÀ» ³Ñ¾î, 'Àç»ý¿¡³ÊÁö 100% »çȸ¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¿­¼è'¸¦ Á¦½ÃÇÑ´Ù´Â Á¡¿¡ ÀÖ´Ù. ¿©¸§Ã¶ ž籤 À׿© Àü·ÂÀ» ÀúÀåÇØ °Ü¿ïö ³­¹æ ¼ö¿ä¿¡ Ȱ¿ëÇϰųª, °èÀý ´ÜÀ§·Î dz·Â ¹ßÀüÀÇ ºÒ¾ÈÁ¤À» ¸Þ¿ì´Â ¹æ½ÄÀÌ °¡´ÉÇÏ´Ù.

Äûµå³Ý ¿¡³ÊÁö°¡ º¸¿©ÁØ »ç·Ê´Â ¾ÆÁ÷ Ãʱ⠴ܰèÀÌÁö¸¸, 'Àúºñ¿ë¡¤°íÈ¿À²¡¤Àå±â¼º'À̶ó´Â ¼¼ °¡Áö Á¶°ÇÀ» µ¿½Ã¿¡ ÃæÁ·ÇÒ ÀáÀç·ÂÀ» º¸¿©ÁÖ¾ú´Ù. ¾ÕÀ¸·Î 10³â ¾È¿¡ ÀÌ ±â¼úÀÌ »ó¿ëÈ­µÈ´Ù¸é, ¿ì¸®´Â '¾ðÁ¦³ª Àü±â¸¦ ¾µ ¼ö ÀÖ´Â ½Ã´ë', Áï ÁøÁ¤ÇÑ Àç»ý¿¡³ÊÁö »çȸ¿¡ ÇÑ °ÉÀ½ ´õ ´Ù°¡¼³ ¼ö ÀÖÀ» °ÍÀÌ´Ù.

* Reference
Nature Communications, 2025, ¡°Intermediate-temperature K-Na/S battery with stable performance enabled by new electrolyte design¡±, Columbia University Engineering.