¸ñ·Ï

Home

åǥÁö

Æ÷½ºÆ®¾çÀÚº¸¾È - °è»êÀÇ ¹Ì·¡¸¦ ÁöŰ´Â ¾ÏÈ£ÇÐ

¼¼°è´Â Áö±Ý, ¾ÏÈ£ÀÇ ¹®¸íÀ» ´Ù½Ã ¾²°í ÀÖ´Ù. ÀηùÀÇ Á¤º¸ ü°è´Â ¼ö½Ê ³â µ¿¾È ¼öÇÐÀû ³­Á¦¸¦ ±â¹ÝÀ¸·Î ¾ÈÀüÇÏ´Ù°í ¹Ï¾î¿Ô´Ù. ±×·¯³ª ¾çÀÚÄÄÇ»ÆÃÀÌ ±× ³­Á¦¸¦ ´Ü ¸î ÃÊ ¸¸¿¡ Ç®¾î¹ö¸± ¼ö ÀÖ..





Post-Quantum Security - The Cryptography That Protects the Future of Computation


The world is rewriting the civilization of cryptography. For decades, humanity has believed its information systems were safe because they relied on mathematical problems deemed impossible to solve. But with quantum computing approaching the ability to solve those problems in seconds, the foundation of digital trust has begun to crumble. 'Post-Quantum Security (PQS)' is the new defensive frontier for civilization after the collapse of computation. In this era, safety can no longer rely on complexity—it must be rebuilt upon a new mathematical order.


The Origin of Cryptography - A Civilization Built on Impossibility
Every civilization hides secrets. Throughout history, cryptography has been more than a technology—it has been the foundation of trust. From Caesar¡¯s cipher in ancient Rome to modern RSA, encryption has always depended on ¡°unsolvable problems.¡± Mathematical impossibility equaled security.

But the advent of computers in the 20th century disrupted this equilibrium. Algorithms grew more complex, but computational power advanced even faster. Security came to rely on a fragile balance between computational speed and mathematical difficulty. Humanity built stronger locks—and simultaneously invented machines capable of breaking them.

At the end of this paradox stood quantum computing. It didn¡¯t merely increase speed; it reinvented the concept of calculation itself. The mathematical walls that once guaranteed safety are now crumbling before a new physical language.

The Quantum Threat - The Fall of RSA and the Reshaping of Computation
Modern Internet security rests on RSA and ECC (Elliptic Curve Cryptography). Both depend on mathematical problems—large-number factorization and discrete logarithms—that are nearly impossible to solve with classical computers. Tasks requiring billions of years to compute are practically unbreakable. But quantum computers destroy that premise.

In 1994, mathematician 'Peter Shor' introduced the 'Shor Algorithm', demonstrating that quantum computers could solve factorization problems 'tens of millions of times faster' than classical ones. Once a 1,000-qubit quantum computer becomes practical, the world¡¯s entire encryption infrastructure could collapse in a single day.

IBM, Google, the Chinese Academy of Sciences, and startups like IonQ and Rigetti are racing toward this threshold. As of 2025, IBM¡¯s 'Condor' chip has achieved 1,121 qubits, and China¡¯s 'Zuchongzhi-3' has experimentally executed Shor¡¯s algorithm. Full-scale commercial implementation is not yet here—but the '¡°Quantum Apocalypse Clock (Q-Day)¡±' is already ticking.

The NSA and NIST declared this a ¡°national security crisis¡± as early as 2022. One technological breakthrough could expose government secrets, financial systems, medical data, and military communications all at once. The question is no longer 'if', but 'how soon'.

The New Mathematics - Cryptography Beyond Quantum
'Post-Quantum Cryptography (PQC)' takes a radically different path—it seeks 'mathematical problems even quantum computers cannot efficiently solve'. The main families of PQC include lattice-based, multivariate, hash-based, and code-based cryptography.

The most prominent among them is 'lattice-based cryptography', which relies on the 'Shortest Vector Problem (SVP)' in high-dimensional lattices—a problem that quantum computers cannot efficiently resolve. Most of NIST¡¯s chosen PQC candidates are lattice-based.

Multivariate cryptography uses polynomial equations with many variables, hash-based cryptography offers structural simplicity with strong resistance, and code-based cryptography, one of the oldest, has demonstrated stability even under quantum attack.

In 2024, NIST officially selected four PQC algorithms as new global standards: 'CRYSTALS-Kyber', 'Dilithium', 'Falcon', and 'SPHINCS+'. These now serve as the backbone for encryption, signatures, and key exchange. Implementation began across U.S. federal systems in 2025 and is expected to dominate the global Internet infrastructure by 2030.

Industry and Geopolitics - The New Map of Digital Sovereignty
Post-quantum security is not a mere technical upgrade—it is a 'geopolitical race for digital sovereignty'. Whichever nation secures quantum-resistant encryption first will dominate the next era of data trust.

The United States, under the 'National Quantum Initiative Act', built a comprehensive security framework through NIST and the NSA. The European Union¡¯s 'Quantum Flagship' added a dedicated PQC division, mandating quantum-safe communication for all public systems. Japan¡¯s NICT launched a 'PQC-Ready Network', while South Korea¡¯s KISA and ETRI have begun full-scale PQC research.

Corporations are equally central to this race. Google and Cloudflare have tested PQC within TLS protocols, Microsoft is converting Azure Cloud to a PQC-compatible architecture, and Korean institutions like KakaoBank, Shinhan Bank, and Naver Cloud plan to adopt PQC across financial systems by 2026.

The true contest is not about encryption itself but 'who defines the new global standard of trust'. Encryption is the new border; networks are the new arteries of power. In the quantum era, security is no longer defined by territory but by algorithms.

Blockchain and Finance - The Crisis and Opportunity of Quantum Power
If quantum computing becomes practical, even blockchain will not remain safe. Systems like Bitcoin and Ethereum rely on ECDSA (Elliptic Curve Digital Signature Algorithm), which Shor¡¯s algorithm can break with ease. The immutability of blockchain is not a physical law—it is a cryptographic promise.

This realization has given rise to the 'Quantum-Resistant Blockchain' movement. IBM and the Algorand Foundation are testing lattice-based digital signatures, while research teams at KAIST and Korea University are developing PQC-compatible consensus mechanisms.

The implications extend to the global financial system. Central Bank Digital Currencies (CBDCs) could become early casualties if not quantum-protected. The European Central Bank and the Bank of Japan began trials for 'quantum-secure monetary protocols' in 2025.

Finance has always lived on the frontier of technology. Today, that frontier has shifted—from 'speed to trust, from efficiency to safety'.

A Paradigm Shift - From Algorithmic Secrecy to Structural Trust
In the post-quantum era, security is no longer about hiding secrets—it is about 'designing structures of trust'. Encryption now defines how societies communicate, trade, and govern.

For enterprises, this transformation goes far beyond swapping cryptographic modules. Databases, authentication systems, network layers, and end-user applications must all be re-engineered for PQC environments. A vast new ecosystem is emerging: certification authorities, key management providers, cryptographic hardware firms, and cybersecurity consultancies.

Korea has already applied PQC within its 'G-Cloud' public infrastructure, with plans to extend it to all e-government platforms by 2028. The U.S. Department of Defense is migrating over 70% of its communication networks, while France and Germany are building a joint European encryption infrastructure.

The challenge lies not in the math but in 'transition management'—upgrading entire societies without breaking them. Changing cryptography is not just a technical process; it is rewriting the social contract.

Philosophical Implications - From the Age of Secrets to the Age of Transparency
The post-quantum era raises philosophical questions beyond technology. For centuries, secrecy has preserved order. But when all information becomes calculable, can secrets survive?

Quantum computation¡¯s absolute power heralds an age where everything can, in theory, be known. Post-quantum security is an attempt to preserve humanity¡¯s 'right to opacity'—the freedom to remain partly unknowable within a fully knowable world.

In the future, security will not only protect data but also 'safeguard thought and anonymity'. The last defense of human dignity lies in the right to remain hidden. Thus, post-quantum security is not merely technological—it is a 'philosophical covenant' to protect the unquantifiable essence of humanity.

Vision 2030 - Toward a Civilization of Verified Trust
By 2030, over 70% of global Internet traffic will operate on PQC. Banking, healthcare, public administration, and defense will all transition to quantum-resistant algorithms. Meanwhile, quantum computers will surpass 10,000 qubits, making cryptographic collapse a tangible threat.

NIST aims for full PQC migration by 2032. Korea, Japan, and the EU are jointly developing a 'Global PQC Certification System'. Cybersecurity strategies are evolving from protection to preservation—from defending technology to maintaining trust.

The post-quantum society will move from civilizations built on ¡°computational impossibility¡± to those governed by 'ethics within computational possibility'. Humanity will no longer depend on secrecy but will build new contracts based on 'verifiable trust, transparent cryptography, and ethical technology'.

Cryptography Is Humanity¡¯s Last Language
Post-quantum security is not merely a technical adaptation—it is the rewriting of civilization¡¯s code. Where old cryptography hid fear, new cryptography declares freedom.

Technology has grown powerful enough to threaten truth itself, and computation approaches divine omniscience. Yet humanity insists on remaining a being that can hide. That hidden space is the essence of dignity—and the final value PQS must defend.

Among all codes ever written, the greatest is trust. In the quantum age, civilization will re-encrypt that trust, proving that even in a computable world, human freedom endures. 'Cryptography is not technology—it is the last language of humanity.'



Æ÷½ºÆ®¾çÀÚº¸¾È - °è»êÀÇ ¹Ì·¡¸¦ ÁöŰ´Â ¾ÏÈ£ÇÐ


¼¼°è´Â Áö±Ý, ¾ÏÈ£ÀÇ ¹®¸íÀ» ´Ù½Ã ¾²°í ÀÖ´Ù. ÀηùÀÇ Á¤º¸ ü°è´Â ¼ö½Ê ³â µ¿¾È ¼öÇÐÀû ³­Á¦¸¦ ±â¹ÝÀ¸·Î ¾ÈÀüÇÏ´Ù°í ¹Ï¾î¿Ô´Ù. ±×·¯³ª ¾çÀÚÄÄÇ»ÆÃÀÌ ±× ³­Á¦¸¦ ´Ü ¸î ÃÊ ¸¸¿¡ Ç®¾î¹ö¸± ¼ö ÀÖ´Â ½Ã´ë°¡ ´Ù°¡¿À¸é¼­, º¸¾ÈÀÇ ÀüÁ¦´Â ¹«³ÊÁ³´Ù. 'Æ÷½ºÆ®¾çÀÚº¸¾È(Post-Quantum Security)'Àº ¹Ù·Î ÀÌ ¡®°è»êÀÇ ºØ±«¡¯ ÀÌÈĸ¦ ´ëºñÇϱâ À§ÇÑ ¹®¸íÀÇ ¹æ¾î¼±ÀÌ´Ù. ´õ ÀÌ»ó ¾ÈÀüÀº ¾Ë°í¸®ÁòÀÇ º¹À⼺ÀÌ ¾Æ´Ï¶ó, »õ·Î¿î ¼öÇÐÀû Áú¼­ À§¿¡ ¼¼¿öÁ®¾ß ÇÑ´Ù.


¾ÏÈ£ÀÇ ±â¿ø - ºÒ°¡´ÉÇÔ¿¡ ÀÇÁ¸ÇÑ ¹®¸í
¸ðµç ¹®¸íÀº ºñ¹ÐÀ» °¡Áø´Ù. ÀηùÀÇ ¿ª»ç¿¡¼­ ¾ÏÈ£´Â ´Ü¼øÇÑ ±â¼úÀÌ ¾Æ´Ï¶ó ½Å·ÚÀÇ ±â¹ÝÀ̾ú´Ù. °í´ë ·Î¸¶ÀÇ Ä«À̻縣 ¾ÏÈ£ºÎÅÍ Çö´ëÀÇ RSA±îÁö, ¾ÏÈ£´Â ¾ðÁ¦³ª ¡®Ç® ¼ö ¾ø´Â ¹®Á¦¡¯¸¦ ÀüÁ¦·Î »ï¾Ò´Ù. ¼öÇÐÀû ºÒ°¡´É¼ºÀÌ °ð ¾ÈÀüÀÇ ±Ù°Å¿´´ø ¼ÀÀÌ´Ù.

ÇÏÁö¸¸ 20¼¼±â ÈĹÝ, ÄÄÇ»ÅÍÀÇ ¹ß¸íÀº ÀÌ ±¸Á¶¸¦ ¿ÏÀüÈ÷ ¹Ù²Ù¾ú´Ù. ¾Ë°í¸®ÁòÀº ´õ º¹ÀâÇØÁ³Áö¸¸, °è»ê ´É·ÂÀº ÈξÀ ´õ »¡¶óÁ³´Ù. ±× °á°ú ¾ÏÈ£ÀÇ ¾ÈÁ¤¼ºÀº ¡®°è»êÀÇ ¼Óµµ¡¯¿Í ¡®¹®Á¦ÀÇ ³­À̵µ¡¯ »çÀÌÀÇ ±ÕÇü¿¡ ÀÇÁ¸ÇÏ°Ô µÇ¾ú´Ù. ¿ì¸®´Â ´õ °­·ÂÇÑ ¾ÏÈ£¸¦ ¸¸µé¾úÁö¸¸, µ¿½Ã¿¡ ±× ¾ÏÈ£¸¦ ºÎ¼ú ¼ö ÀÖ´Â ±â°èµµ ÇÔ²² ¹ßÀü½ÃŲ °ÍÀÌ´Ù.

ÀÌ ¿ª¼³ÀÇ ³¡¿¡ µîÀåÇÑ °ÍÀÌ ¹Ù·Î ¾çÀÚÄÄÇ»ÆÃÀÌ´Ù. ±×°ÍÀº ¼ÓµµÀÇ Â÷¿øÀÌ ¾Æ´Ï¶ó, °è»êÀÇ ¿ø¸® ÀÚü¸¦ ¹Ù²Ù´Â ±â¼úÀÌ´Ù. ¿ì¸®°¡ ¾ÈÀüÇÏ´Ù°í ¹Ï¾ú´ø ¼öÇÐÀÇ º®ÀÌ, ÀüÇô ´Ù¸¥ ¹°¸®ÇÐÀû ¾ð¾î ¾Õ¿¡¼­ Çã¹°¾îÁö±â ½ÃÀÛÇß´Ù.

¾çÀÚÀÇ À§Çù - RSAÀÇ ¸ô¶ô°ú °è»êÀÇ ÀçÆí
Çö´ë ÀÎÅͳÝÀÇ º¸¾ÈÀº ´ëºÎºÐ RSA¿Í ECC(Ÿ¿ø°î¼±¾ÏÈ£)¿¡ ±â¹ÝÇÑ´Ù. µÎ ü°è ¸ðµÎ ¡®Å« ¼öÀÇ ¼ÒÀμöºÐÇØ¡¯¿Í ¡®ÀÌ»ê ·Î±× ¹®Á¦¡¯¶ó´Â ¼öÇÐÀû ³­Á¦¸¦ ÀÌ¿ëÇÑ´Ù. °íÀüÀûÀÎ ÄÄÇ»Åͷδ ¼ö½Ê¾ï ³âÀÌ °É¸± ¿¬»êÀ̱⿡, Çö½ÇÀûÀ¸·Î ÇØµ¶ÀÌ ºÒ°¡´ÉÇß´Ù. ±×·¯³ª ¾çÀÚÄÄÇ»ÅÍ´Â ÀÌ ÀüÁ¦¸¦ ¹«³Ê¶ß¸°´Ù.

1994³â, ¼öÇÐÀÚ ÇÇÅÍ ¼î¾î(Peter Shor)´Â ¡®¼î¾î ¾Ë°í¸®Áò(Shor¡¯s Algorithm)¡¯À» ¹ßÇ¥Çß´Ù. ÀÌ ¾Ë°í¸®ÁòÀº ¼ÒÀμöºÐÇØ ¹®Á¦¸¦ °íÀü ÄÄÇ»Åͺ¸´Ù '¼öõ¸¸ ¹è ºü¸£°Ô' ÇØ°áÇÒ ¼ö ÀÖÀ½À» Áõ¸íÇß´Ù. ¸¸¾à 1,000Å¥ºñÆ®±Þ ¾çÀÚÄÄÇ»ÅͰ¡ Çö½ÇÈ­µÈ´Ù¸é, Àü ¼¼°èÀÇ ¾ÏÈ£ ü°è´Â ´Ü ÇÏ·ç ¸¸¿¡ ¹«·ÂÈ­µÉ ¼ö ÀÖ´Ù.

IBM, ±¸±Û, Áß±¹°úÇпø, ±×¸®°í IonQ, Rigetti °°Àº ±â¾÷µéÀº ¸ðµÎ ÀÌ ÀÓ°èÁ¡À» ÇâÇØ ´Þ¸®°í ÀÖ´Ù. 2025³â ÇöÀç IBMÀÇ ¡®Condor¡¯ ĨÀº ÀÌ¹Ì 1,121Å¥ºñÆ®¸¦ ´Þ¼ºÇß°í, Áß±¹ÀÇ ¡®ÁÖû 3È£¡¯´Â ¼î¾î ¾Ë°í¸®ÁòÀ» ½ÇÇèÀûÀ¸·Î ±¸ÇöÇß´Ù. ¾ÆÁ÷ ¿ÏÀüÇÑ »ó¿ëÈ­´Â ¾Æ´ÏÁö¸¸, '¡°¾çÀÚ ¾ÏÈ£ ºØ±« ½Ã°è(Q-Day)¡±'´Â ÀÌ¹Ì ÀÛµ¿À» ½ÃÀÛÇß´Ù.

NSA¿Í NIST´Â 2022³â ÀÌÈÄ À̸¦ ¡°±¹°¡Àû º¸¾È À§±â¡±·Î ±ÔÁ¤Çß´Ù. ´Ü ÇÑ ¹øÀÇ ±â¼úÀû µ¹ÆÄ°¡ ±¹°¡ ±â¹Ð, ±ÝÀ¶ °Å·¡, ÀÇ·á ±â·Ï, ±º»ç Åë½Å µî ¸ðµç ½Ã½ºÅÛÀ» ³ëÃâ½Ãų ¼ö Àֱ⠶§¹®ÀÌ´Ù. ¹®Á¦´Â ¡®¾ðÁ¦¡¯°¡ ¾Æ´Ï¶ó ¡®¾ó¸¶³ª »¡¸®¡¯ ¿À´Â°¡ÀÌ´Ù.

»õ·Î¿î ¼öÇÐÀÇ ½Ã´ë - ¾çÀÚ ÀÌÈÄÀÇ ¾ÏÈ£ÇÐ
Æ÷½ºÆ®¾çÀÚ¾ÏÈ£(Post-Quantum Cryptography, PQC)´Â ±âÁ¸ÀÇ ¼öÇÐÀû ¾àÁ¡À» ¿ÏÀüÈ÷ ´Ù¸¥ ¹æ½ÄÀ¸·Î ¿ìȸÇÑ´Ù. ±× ÇÙ½ÉÀº '¾çÀÚÄÄÇ»ÅÍÁ¶Â÷ Ç® ¼ö ¾ø´Â »õ·Î¿î ³­Á¦'¸¦ ã´Â °ÍÀÌ´Ù. ÇöÀç ÁÖ¿ä È帴 °ÝÀÚ(Lattice), ´Ùº¯¼ö(Multivariate), ÇØ½Ã ±â¹Ý(Hash-based), ÄÚµå ±â¹Ý(Code-based) ¾ÏÈ£ µîÀÌ ÀÖ´Ù.

°¡Àå ÁÖ¸ñ¹Þ´Â °ÍÀº '°ÝÀÚ ±â¹Ý ¾ÏÈ£(Lattice-Based Cryptography)'´Ù. ÀÌ´Â °íÂ÷¿ø °ÝÀÚ À§ÀÇ º¤ÅÍ °£ ÃִܰŸ® ¹®Á¦(Shortest Vector Problem, SVP)¸¦ ÀÌ¿ëÇÑ´Ù. ÀÌ ¹®Á¦´Â ¾çÀÚÄÄÇ»Å͵µ È¿À²ÀûÀ¸·Î ÇØ°áÇÏÁö ¸øÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ¹Ì±¹ NIST°¡ ¼±Á¤ÇÑ PQC ÃÖÁ¾ Èĺ¸ Áß ´ëºÎºÐÀÌ ÀÌ ¹æ½ÄÀÌ´Ù.

´Ùº¯¼ö ±â¹Ý ¾ÏÈ£´Â ¿©·¯ º¯¼öÀÇ ´ÙÇ×½ÄÀ» ÀÌ¿ëÇϸç, ÇØ½Ã ±â¹Ý ¾ÏÈ£´Â ´Ü¼øÇÏÁö¸¸ ±¸Á¶ÀûÀ¸·Î ±úÁöÁö ¾Ê´Â ¾ÈÁ¤¼ºÀ» Áö´Ñ´Ù. ÄÚµå ±â¹Ý ¾ÏÈ£´Â ¿À·£ °ËÁõÀ» °ÅÄ£ °íÀüÀû ¹æ½ÄÀ¸·Î, ¾çÀÚ È¯°æ¿¡¼­µµ ¾ÈÁ¤¼ºÀÌ ÀÔÁõµÇ°í ÀÖ´Ù.

NIST´Â 2024³â, ³× °¡Áö Ç¥ÁØ ¾Ë°í¸®ÁòÀ» °ø½Ä ¼±Á¤Çß´Ù. ¡®CRYSTALS-Kyber¡¯, ¡®Dilithium¡¯, ¡®Falcon¡¯, ¡®SPHINCS+¡¯. À̵éÀº °¢°¢ ¾Ïȣȭ, ¼­¸í, Ű ±³È¯ ºÐ¾ßÀÇ »õ·Î¿î Ç¥ÁØÀÌ µÇ¾ú´Ù. 2025³âºÎÅÍ ¹Ì±¹ ¿¬¹æÁ¤ºÎ ½Ã½ºÅÛ¿¡ ´Ü°èÀûÀ¸·Î Àû¿ëµÇ±â ½ÃÀÛÇßÀ¸¸ç, 2030³â±îÁö Àü ¼¼°è ÀÎÅÍ³Ý ÀÎÇÁ¶ó¿¡ µµÀ﵃ ¿¹Á¤ÀÌ´Ù.

»ê¾÷°ú ±¹°¡ÀÇ ´ëÀÀ - º¸¾ÈÀÇ ÁöÁ¤ÇÐ
Æ÷½ºÆ®¾çÀÚº¸¾ÈÀº ´Ü¼øÇÑ ±â¼ú ÀüȯÀÌ ¾Æ´Ï´Ù. ±×°ÍÀº ±¹°¡ °£ÀÇ 'µðÁöÅÐ ÁÖ±Ç °æÀï'ÀÌ´Ù. ´©°¡ ¸ÕÀú ¾ÈÀüÇÑ ¾ÏÈ£ ü°è¸¦ ±¸ÃàÇÏ´À³Ä°¡, ¹Ì·¡ÀÇ µ¥ÀÌÅÍ ÆÐ±ÇÀ» °áÁ¤ÇÑ´Ù.

¹Ì±¹Àº ¡®±¹°¡¾çÀÚÀÌ´Ï¼ÅÆ¼ºê¹ý(NQI Act)¡¯ ¾Æ·¡ NIST¿Í NSA°¡ ÁÖµµÇÏ´Â ¡®¾çÀھȺ¸ ÇÁ·¹ÀÓ¿öÅ©¡¯¸¦ ±¸ÃàÇß´Ù. À¯·´¿¬ÇÕÀº ¡®Quantum Flagship¡¯ ÇÁ·ÎÁ§Æ® ³»¿¡ º¸¾È Àü´ã ºÎ¹®À» ½Å¼³ÇØ, ¸ðµç °ø°ø Åë½Å¿¡ PQC¸¦ Àǹ«È­Çϰí ÀÖ´Ù. ÀϺ»Àº NICT¸¦ Áß½ÉÀ¸·Î ¡®PQC-Ready Network¡¯¸¦ ½Ã¹ü ¿î¿µ ÁßÀ̸ç, Çѱ¹Àº KISA¿Í ETRI¸¦ ÅëÇØ ¾çÀÚ³»¼º¾ÏÈ£ ¿¬±¸¸¦ º»°ÝÈ­Çß´Ù.

±â¾÷µéµµ ÀÌ °æÀïÀÇ Á߽ɿ¡ ÀÖ´Ù. ±¸±Û°ú Ŭ¶ó¿ìµåÇ÷¹¾î´Â À¥ º¸¾È ÇÁ·ÎÅäÄÝ(TLS)¿¡ PQC¸¦ ½ÇÇèÀûÀ¸·Î Àû¿ëÇß°í, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®´Â Azure Ŭ¶ó¿ìµå Àü¹ÝÀ» PQC ȣȯ ±¸Á¶·Î Àüȯ ÁßÀÌ´Ù. Çѱ¹ÀÇ Ä«Ä«¿À¹ðÅ©, ½ÅÇÑÀºÇà, ³×À̹öŬ¶ó¿ìµå´Â 2026³âºÎÅÍ ±ÝÀ¶ ½Ã½ºÅÛ¿¡ ´Ü°èÀûÀ¸·Î PQC¸¦ µµÀÔÇÒ °èȹÀÌ´Ù.

ÀÌ °æÀïÀÇ º»ÁúÀº ´Ü¼øÇÑ ¾Ïȣȭ°¡ ¾Æ´Ï¶ó '½Å·ÚÀÇ ÀÎÇÁ¶ó¸¦ ´©°¡ ¸ÕÀú Ç¥ÁØÈ­ÇÏ´À³Ä'¿¡ ÀÖ´Ù. ¾ÏÈ£´Â ±¹°¡ÀÇ °æ°è¼±À̰í, Åë½Å¸ÁÀº °æÁ¦ÀÇ Ç÷°üÀÌ´Ù. ¾çÀÚ ½Ã´ëÀÇ ¾Èº¸´Â ´õ ÀÌ»ó ±¹°æÀÌ ¾Æ´Ï¶ó ¾Ë°í¸®ÁòÀ¸·Î Á¤ÀǵȴÙ.

ºí·ÏüÀΰú ±ÝÀ¶ - ¾çÀÚ°¡ ºÎ¸£´Â À§±â¿Í ±âȸ
¾çÀÚÄÄÇ»ÅͰ¡ Çö½ÇÈ­µÇ¸é ºí·ÏüÀεµ ¾ÈÀüÇÏÁö ¾Ê´Ù. ºñÆ®ÄÚÀÎ, ÀÌ´õ¸®¿ò µî ´ëºÎºÐÀÇ ºí·ÏüÀÎ ½Ã½ºÅÛÀº ECDSA(Ÿ¿ø°î¼± µðÁöÅÐ ¼­¸í ¾Ë°í¸®Áò)¿¡ ÀÇÁ¸ÇÑ´Ù. ±×·¯³ª ¼î¾î ¾Ë°í¸®ÁòÀº ÀÌ ¼­¸íÀ» ´Ü¼û¿¡ ÇØµ¶ÇÒ ¼ö ÀÖ´Ù. ºí·ÏüÀÎÀÇ ºÒº¯¼ºÀº ±â¼úÀû ¹ÏÀ½ÀÌ ¾Æ´Ï¶ó, ¾ÏÈ£Àû ¾à¼Ó À§¿¡ ¼­ ÀÖ¾ú´ø °ÍÀÌ´Ù.

ÀÌ¿¡ µû¶ó ¡®¾çÀÚ³»¼º ºí·ÏüÀÎ(Quantum-Resistant Blockchain)¡¯ÀÌ »õ·Î¿î ¿¬±¸ ºÐ¾ß·Î ±ÞºÎ»óÇß´Ù. IBM°ú Algorand Àç´ÜÀº °ÝÀÚ ±â¹Ý ¼­¸íÀ» Àû¿ëÇÑ ½ÇÇè¸ÁÀ» °¡µ¿ ÁßÀ̸ç, Çѱ¹ÀÇ KAIST¿Í °í·Á´ë ¿¬±¸Áøµµ PQC ±â¹Ý ºí·ÏüÀÎ ÇÕÀÇ ¾Ë°í¸®ÁòÀ» °³¹ßÇϰí ÀÖ´Ù.

ÀÌ º¯È­´Â ±ÝÀ¶ »ê¾÷ Àüü¸¦ ´Ù½Ã ¼³°èÇÏ°Ô ¸¸µç´Ù. Áß¾ÓÀºÇàÀÇ µðÁöÅÐÈ­Æó(CBDC) ¿ª½Ã Æ÷½ºÆ®¾çÀÚº¸¾ÈÀ¸·Î º¸È£µÇÁö ¾ÊÀ¸¸é, ¾çÀÚ ÇØÅ·ÀÇ Ã¹ ¹øÂ° Èñ»ý¾çÀÌ µÉ ¼ö ÀÖ´Ù. ½ÇÁ¦·Î À¯·´Áß¾ÓÀºÇà(ECB)°ú ÀϺ»ÀºÇàÀº 2025³âºÎÅÍ ¡®¾çÀÚ³»¼º ÅëÈ­ ÇÁ·ÎÅäÄÝ¡¯ ½ÇÇèÀ» ½ÃÀÛÇß´Ù.

±ÝÀ¶Àº ¾ðÁ¦³ª ±â¼úÀÇ ÃÖÀü¼±¿¡ ÀÖ¾ú´Ù. Áö±Ý ±× Àü¼±Àº '¼Óµµ¿¡¼­ ½Å·Ú·Î, È¿À²¿¡¼­ ¾ÈÀüÀ¸·Î' À̵¿Çϰí ÀÖ´Ù.

º¸¾ÈÀÇ ÆÐ·¯´ÙÀÓ Àüȯ - ¾Ë°í¸®Áò¿¡¼­ ±¸Á¶·Î
Æ÷½ºÆ®¾çÀÚ ½Ã´ëÀÇ º¸¾ÈÀº ´õ ÀÌ»ó ¡®ºñ¹Ð¡¯À» ¼û±â´Â ±â¼úÀÌ ¾Æ´Ï´Ù. ±×°ÍÀº '½Å·Ú¸¦ ¼³°èÇÏ´Â ±¸Á¶Àû ½Ã½ºÅÛ'ÀÌ´Ù. ¾Ïȣȭ ±â¼úÀÌ Àΰ£ÀÇ ÀÇ»ç¼ÒÅë°ú °Å·¡ÀÇ ±â¹ÝÀÌ µÈ Áö±Ý, ½Å·Ú´Â ÄÚµå ¾È¿¡¼­ ´Ù½Ã Á¤ÀǵȴÙ.

±â¾÷ÀÇ IT º¸¾ÈÆÀÀº ´Ü¼øÈ÷ ¾ÏÈ£ ¸ðµâÀ» ±³Ã¼ÇÏ´Â °ÍÀ¸·Î ³¡³ªÁö ¾Ê´Â´Ù. µ¥ÀÌÅͺ£À̽º, ÀÎÁõ¼­, ³×Æ®¿öÅ© Àåºñ, »ç¿ëÀÚ ¾ÖÇø®ÄÉÀÌ¼Ç µî ¸ðµç °èÃþÀ» PQC ȯ°æÀ¸·Î À籸¼ºÇØ¾ß ÇÑ´Ù. ÀÌ °úÁ¤¿¡¼­ °Å´ëÇÑ »ê¾÷ »ýŰ谡 »õ·Ó°Ô ž´Ù. ÀÎÁõ ±â°ü, ¾ÏÈ£ ¸ðµâ °³¹ß»ç, Ű °ü¸® ¼­ºñ½º, »çÀ̹öº¸¾È ÄÁ¼³ÆÃ µîÀÌ »õ·Î¿î ½ÃÀåÀ¸·Î µîÀåÇÑ´Ù.

Çѱ¹Àº ÀÌ¹Ì °ø°ø Ŭ¶ó¿ìµå º¸¾ÈÀÎÁõ(G-Cloud)¿¡ PQC ½Ã¹ü µµÀÔÀ» ¿Ï·áÇß°í, 2028³âºÎÅÍ ÀüÀÚÁ¤ºÎ Ç÷§Æû Àüü¿¡ Àû¿ëÇÒ °èȹÀÌ´Ù. ¹Ì±¹ ±¹¹æºÎ´Â ±º»ç Åë½Å¸ÁÀÇ 70% ÀÌ»óÀ» PQC·Î ÀüȯÇÏ´Â ÇÁ·ÎÁ§Æ®¸¦ ÁøÇà ÁßÀ̸ç, ÇÁ¶û½º¿Í µ¶ÀÏÀº ¡®À¯·´ °øµ¿ ¾ÏÈ£ ÀÎÇÁ¶ó¡¯ ±¸ÃàÀ» ÃßÁøÇϰí ÀÖ´Ù.

ÀÌ º¯È­ÀÇ ÇÙ½ÉÀº ±â¼úº¸´Ù ¡®ÀÌÇ࡯¿¡ ÀÖ´Ù. ±âÁ¸ ½Ã½ºÅÛÀ» ¹«·ÂÈ­½ÃŰÁö ¾ÊÀ¸¸é¼­ »õ ü°è·Î ÀüȯÇÏ´Â °ÍÀº ±â¼úÀû¡¤Á¤Ä¡Àû µµÀüÀÌ´Ù. ¾ÏÈ£¸¦ ¹Ù²Ù´Â ÀÏÀº °ð »çȸÀÇ ¾ð¾î¸¦ ¹Ù²Ù´Â ÀÏÀÌ´Ù.

öÇÐÀû ÇÔÀÇ - ºñ¹ÐÀÇ ½Ã´ë¿¡¼­ Åõ¸í¼ºÀÇ ½Ã´ë·Î
Æ÷½ºÆ®¾çÀÚº¸¾ÈÀÌ ´øÁö´Â Áú¹®Àº ±â¼úÀ» ³Ñ¾î ¹®¸íÀÇ Ã¶ÇÐÀ¸·Î È®ÀåµÈ´Ù. Àΰ£Àº ¾ðÁ¦³ª ºñ¹ÐÀ» ÅëÇØ Áú¼­¸¦ À¯ÁöÇØ¿Ô´Ù. ±×·¯³ª ¿ÏÀüÇÑ °è»êÀÇ ½Ã´ë, ¸ðµç Á¤º¸°¡ ¿¹Ãø °¡´ÉÇÑ ±¸Á¶ ¾È¿¡ ÀÖÀ» ¶§, ¡®ºñ¹Ð¡¯Àº ´õ ÀÌ»ó Á¸ÀçÇÒ ¼ö ÀÖÀ»±î?

¾çÀÚÄÄÇ»ÆÃÀÌ ¸¸µé¾î³»´Â Àý´ëÀû °è»ê ´É·ÂÀº, °á±¹ ¡®¸ðµç °ÍÀ» ¾Ë ¼ö ÀÖ´Â »çȸ¡¯ÀÇ µµ·¡¸¦ ÀǹÌÇÑ´Ù. Æ÷½ºÆ®¾çÀÚº¸¾ÈÀº ±× ¼Ó¿¡¼­ Àΰ£ÀÇ 'ºÒÅõ¸í¼ºÀÇ ±Ç¸®'¸¦ ÁöŰ·Á´Â ½Ãµµ´Ù. ´Ù½Ã ¸»ÇØ, ¸ðµç °ÍÀ» °è»êÇÒ ¼ö ÀÖ°Ô µÈ ½Ã´ë¿¡ ¡®°è»êµÇÁö ¾ÊÀ» ÀÚÀ¯¡¯¸¦ ³²°ÜµÎ´Â °ÍÀÌ´Ù.

¹Ì·¡ÀÇ º¸¾ÈÀº ´Ü¼øÈ÷ Á¤º¸¸¦ º¸È£ÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó, Àΰ£ÀÇ »çÀ¯¿Í ÀÍ¸í¼ºÀ» º¸È£ÇÏ´Â ÀÏÀÌ´Ù. Àΰ£ÀÌ Àΰ£À¸·Î ³²±â À§ÇØ ÇÊ¿äÇÑ ¸¶Áö¸· ¹æ¾î¸·ÀÌ ¹Ù·Î ¾ÏÈ£´Ù. ±×·¡¼­ Æ÷½ºÆ®¾çÀÚº¸¾ÈÀº ±â¼úÀÌ ¾Æ´Ï¶ó 'ÀηùÀÇ Á¸¾öÀ» À§ÇÑ Ã¶ÇÐÀû °è¾à'ÀÌ µÈ´Ù.

2030³âÀÇ Àü¸Á - ½Å·ÚÀÇ ¹®¸íÀ¸·Î °¡´Â ±æ
2030³â, Àü ¼¼°è ÀÎÅͳÝÀÇ 70% ÀÌ»óÀº PQC ±â¹Ý Åë½ÅÀ¸·Î ÀüȯµÉ °ÍÀ¸·Î ¿¹»óµÈ´Ù. ±ÝÀ¶, ÀÇ·á, °ø°ø, ±¹¹æ¸ÁÀÌ ¸ðµÎ ¾çÀÚ³»¼º ¾Ë°í¸®ÁòÀ» žÀçÇÏ°Ô µÈ´Ù. µ¿½Ã¿¡ ¾çÀÚÄÄÇ»ÅÍ´Â 1¸¸ Å¥ºñÆ® ¼öÁØÀ¸·Î ÁøÀÔÇϸç, Çö½ÇÀûÀÎ ¾ÏÈ£ ºØ±« °¡´É¼ºÀÌ °¡½ÃÈ­µÈ´Ù.

NIST´Â 2032³â±îÁö PQC ¿ÏÀü ÀüȯÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, Çѱ¹, ÀϺ», EU°¡ °øµ¿À¸·Î ¡®±Û·Î¹ú PQC ÀÎÁõ ü°è¡¯¸¦ ÃßÁø ÁßÀÌ´Ù. °¢±¹ÀÇ »çÀ̹öº¸¾È Àü·«Àº ´õ ÀÌ»ó ±â¼ú º¸È£°¡ ¾Æ´Ï¶ó ¡®½Å·Ú À¯Áö¡¯·Î ÀüȯµÇ°í ÀÖ´Ù.

Æ÷½ºÆ®¾çÀÚ ½Ã´ëÀÇ »çȸ´Â ¡®°è»ê ºÒ°¡´É¼º¡¯¿¡ ÀÇÁ¸ÇÏ´ø ¹®¸í¿¡¼­, ¡®°è»ê °¡´É¼º ¼ÓÀÇ À±¸®¡¯¸¦ ¿ä±¸ÇÏ´Â ¹®¸íÀ¸·Î ÁøÈ­ÇÒ °ÍÀÌ´Ù. ¿ì¸®´Â ÀÌÁ¦ ´õ ÀÌ»ó ºñ¹ÐÀ» ¹ÏÁö ¾Ê´Â´Ù. ´ë½Å '°ËÁõ °¡´ÉÇÑ ½Å·Ú', 'Åõ¸íÇÑ ¾ÏÈ£ÇÐ', 'À±¸®Àû ±â¼ú'À» ±â¹ÝÀ¸·Î »õ·Î¿î »çȸ °è¾àÀ» ¸Î°Ô µÈ´Ù.

¾ÏÈ£´Â Àΰ£ÀÇ ¸¶Áö¸· ¾ð¾î´Ù
Æ÷½ºÆ®¾çÀÚº¸¾ÈÀº ´Ü¼øÈ÷ ±â¼úÀû ´ëÀÀÀÌ ¾Æ´Ï´Ù. ±×°ÍÀº ¹®¸íÀÇ ¾ð¾î¸¦ »õ·Î ¾²´Â ÀÏÀÌ´Ù. °ú°ÅÀÇ ¾ÏÈ£°¡ Àΰ£ÀÇ µÎ·Á¿òÀ» ¼û±â±â À§ÇÑ ÀåÄ¡¿´´Ù¸é, »õ·Î¿î ¾ÏÈ£´Â Àΰ£ÀÇ ÀÚÀ¯¸¦ Áö۱â À§ÇÑ ¼±¾ðÀÌ´Ù.

±â¼úÀº ÀÌÁ¦ Áø½ÇÀ» À§ÇùÇÒ ¸¸Å­ °­·ÂÇØÁ³°í, °è»êÀº ½ÅÀÇ ¿µ¿ª¿¡ ´Ù°¡¼¹´Ù. ±×·¯³ª Àΰ£Àº ¿©ÀüÈ÷ ¡®¼û±æ ¼ö ÀÖ´Â Á¸À硯·Î ³²°íÀÚ ÇÑ´Ù. ±× ¼û°ÜÁø ¿©¹éÀÌ Àΰ£ÀÇ Á¸¾öÀ̸ç, Æ÷½ºÆ®¾çÀÚº¸¾ÈÀÌ ÁöÄÑ¾ß ÇÒ ¸¶Áö¸· °¡Ä¡´Ù.

Àηù°¡ ¸¸µé¾î³½ ¼ö¸¹Àº ÄÚµå Áß, °¡Àå À§´ëÇÑ ÄÚµå´Â ¡®½Å·Ú¡¯´Ù. ¾çÀÚ ½Ã´ëÀÇ ¹®¸íÀº ±× ½Å·Ú¸¦ ´Ù½Ã ¾ÏȣȭÇϸç, °è»ê °¡´ÉÇÑ ¼¼°è ¼Ó¿¡¼­µµ Àΰ£ÀÇ ÀÚÀ¯¸¦ Áõ¸íÇÏ·Á ÇÑ´Ù. '¾ÏÈ£´Â ±â¼úÀÌ ¾Æ´Ï¶ó, Àΰ£ÀÌ ³²±ä ¸¶Áö¸· ¾ð¾î'´Ù.

ÀÌÀü

¸ñ·Ï