Quantum Computing Revolution: Technology Redesigning Civilization
¡ª Beyond AI, Toward the Next Battlefield of Global Power
Beyond the Boundary of Calculation — The World Hidden Between 0 and 1
Since the latter half of the twentieth century, the driving force of human progress has been digital computation. Two simple numbers, 0 and 1, have come to express all data and logic, reconstructing modern civilization. Yet as semiconductor miniaturization reaches its physical limits and Moore¡¯s Law slows down, humanity has arrived at a stage where progress can no longer rely solely on speed and efficiency.
Quantum computing has emerged as the breakthrough to this technological stagnation. It is not merely a faster computer; it is ¡°a revolution that rewrites the principle of computation itself.¡± While classical computers develop logic from fixed states (either 0 or 1), quantum computers explore the entire probabilistic space between them simultaneously.
In 2023, Google announced that its chip .Sycamore 2. performed a specific probabilistic distribution calculation in 241 seconds — a task that would take a classical supercomputer 47 years. In 2024, IBM unveiled its .Condor. chip, declaring the achievement of 1,000 qubits. Quantum computing is no longer an abstract idea of the future but a realistic front line in industrial competition.
Qubits and Entanglement — The Birth of a Mind That Calculates Probability
At the core of quantum computers lies the qubit. Whereas a classical bit can exist only as either 0 or 1, a qubit can remain in a state of superposition, holding both 0 and 1 at once. When multiple qubits become entangled, a change in one qubit¡¯s state instantly determines the state of another, no matter the distance between them.
Through these two principles, quantum computers can perform operations that classical machines must process serially, but in parallel. For example, they can simultaneously explore thousands of molecular configurations or calculate optimal logistics routes in a single operation. This is not merely a matter of speed; it is a revolution in the very methodology of computation.
However, qubits are extremely sensitive to their surroundings. Even minute changes in vacuum, temperature, or magnetic noise can cause decoherence and errors. To overcome this, scientists are developing Quantum Error Correction, a form of ¡°self-healing computational architecture.¡± As of 2025, IBM and Rigetti have achieved around 99.9 percent fidelity, while the target for practical commercialization is 99.999 percent or higher.
The Hardware Power Game — The War of Superconducting, Ion Trap, Photonic, and Spin Qubits
The real battlefield of quantum computing lies in hardware. How qubits are physically implemented determines the technology¡¯s identity and who will dominate the market.
At the forefront stands the superconducting qubit platform. IBM and Google lead this field, already operating prototypes with hundreds of qubits. However, these machines must be kept at near absolute zero (–273 ¡ÆC), making large-scale commercialization challenging.
The ion-trap approach, driven by companies such as Quantinuum and IonQ, uses electromagnetic fields to levitate and control ions in mid-air. This technique offers high stability and precise entanglement control but requires bulky equipment and yields slower processing speeds.
Photonic-based quantum computing, which employs particles of light as qubits, is another promising frontier. Canada¡¯s Xanadu and the UK¡¯s PsiQuantum are developing systems that can operate at room temperature and easily integrate with existing telecom networks. Lower cooling costs and compatibility with optical infrastructure give this approach long-term potential.
Finally, silicon-spin technology is gaining traction, particularly in South Korea, Japan, and the Netherlands, due to its compatibility with existing semiconductor manufacturing. Samsung Electronics has begun exploring the fusion of semiconductors and quantum chips, pioneering what it calls the .¡°quantum semiconductor.¡±.
All these platforms ultimately converge on a single goal: scalability. IBM plans to build a 100,000-qubit machine by 2033, while the Chinese Academy of Sciences aims to unveil a 1-million-qubit simulator by 2030. The strategic battleground of the twenty-first century has quietly moved into cryogenic chambers and vacuum systems.
The Rise of Quantum Software — Algorithms That Will Redefine Industry
If hardware is the body of quantum computing, then software is its soul. Quantum algorithms follow a logic fundamentally different from that of classical computing.
A prominent example is the Shor algorithm, which can perform integer factorization thousands of times faster than any classical counterpart, posing an existential threat to modern cryptographic systems. Should this algorithm be fully realized, traditional RSA encryption and even blockchain security would become obsolete.
Another landmark is the Grover algorithm, capable of searching large datasets in roughly the square root of the time a classical computer would need. This breakthrough has broad implications for search engines, recommendation systems, and artificial-intelligence data processing.
In the commercial world, hybrid architectures combining quantum and classical computing are spreading rapidly. Platforms such as IBM Q Network, Amazon Braket, and Microsoft Azure Quantum allow companies to access quantum resources via the cloud, without owning physical hardware.
Real-world examples are multiplying. Pharmaceutical giant Merck employs quantum simulation to accelerate the discovery of drug candidates, while J.P. Morgan Chase uses quantum algorithms to optimize financial portfolios and reduce risk exposure. Quantum computing is no longer a ¡°technology confined to research papers¡± but a tool embedded in industrial practice.
Industrial Upheaval — Five Sectors Being Reshaped by Quantum Technology
Quantum computing is rewriting the rules of the global economy, extending far beyond any single industry. Yet five sectors have already begun to experience the tremors of transformation.
¨ç The end of classical security and encryption
Quantum computers can rapidly decrypt public-key encryption systems (PKC), which underpin today¡¯s digital security. In response, the U.S. National Security Agency has already published a migration roadmap to .Post-Quantum Cryptography (PQC).. Google and Apple are integrating PQC algorithms into their proprietary encryption protocols, while South Korea¡¯s KISA is working on standardizing quantum-secure communication networks.
¨è Drug and materials discovery
Quantum simulation enables precise prediction of molecular reactions, drastically shortening experimental cycles. Pharmaceutical company Roche reported that quantum-aided analysis accelerated its cancer drug discovery by fourfold. In South Korea, LG Chem has applied quantum simulation to design new battery materials, aiming to increase energy density and durability.
¨é Finance and risk analysis
Banks such as J.P. Morgan, Goldman Sachs, and Deutsche Bank are exploring quantum algorithms for portfolio optimization and derivative pricing. By evaluating trillions of potential outcomes in parallel, these algorithms promise to enhance decision-making under uncertainty and transform risk management itself.
¨ê Logistics and energy optimization
Japanese automaker Toyota has experimented with quantum simulation to optimize vehicle routing, while TEPCO, Japan¡¯s major electric utility, tested D-Wave systems for real-time grid-balancing. From global shipping routes to smart grids, quantum optimization could save billions in operational costs.
¨ë AI convergence
Google¡¯s Quantum AI Lab is pioneering .Quantum Machine Learning (QML)., a field that combines AI¡¯s pattern recognition with quantum computation¡¯s probabilistic power. The synergy could dramatically accelerate the training of large AI models, allowing them to explore solution spaces that were previously unreachable. If AI ¡°understands¡± data, quantum computing ¡°simulates¡± it.
The Surge of Capital and Startups — A Quantum Ecosystem Explodes
Quantum computing is no longer a futuristic curiosity; it has become a present-day investment industry.
As of 2025, more than 80 quantum-related startups operate worldwide, collectively attracting over $15 billion in venture funding. Canada¡¯s Xanadu, the U.S.-based IonQ, the U.K.¡¯s Quantinuum, Germany¡¯s IQM, and Australia¡¯s Silicon Quantum Computing have all grown into strategic national enterprises.
Venture capital interest is surging around the model known as ¡°Quantum as a Service (QaaS).¡± Through this subscription-based system, companies can access quantum computing power via the cloud. Amazon¡¯s AWS Braket already rents quantum resources to corporate clients, while Japan¡¯s NTT has launched its own quantum cloud testbed.
According to McKinsey & Company, the global quantum-computing industry could generate an economic impact of up to $700 billion (approximately ₩950 trillion) by 2035. The most profound benefits are expected in finance, pharmaceuticals, chemicals, and logistics—fields where efficiency improvements alone could add two to three percent to global GDP.
The common denominator across the ecosystem is clear: the race is not about achieving commercialization first, but about owning the ecosystem early. Whoever secures developers, algorithms, and talent will ultimately win the quantum era.
The Geopolitics of Technology — The New Battlefield of Quantum Supremacy
Quantum computing has evolved beyond science and engineering; it has become a matter of national security and geopolitical power.
The United States leads with the .National Quantum Initiative Act (NQI Act)., a comprehensive program integrating research, industry, and defense policies under one framework. The White House¡¯s Subcommittee on Quantum Information Science coordinates partnerships across government agencies, corporations, and universities to secure .quantum leadership.. Google, IBM, and NASA anchor this ecosystem, linking public research with private innovation.
China pursues its own independent path through a strategy known as .¡°Quantum Rise¡± (Õáí崛ÑÃ).. It has invested more than $10 billion to establish a National Laboratory for Quantum Information Science in Hefei, Anhui Province. In 2020, China launched the world¡¯s first quantum-communication satellite, .Micius (ÙøíûÜ)., and in 2023 unveiled its 200-qubit quantum computer .Zuchongzhi-3 (ðÓõøñý 3 ûÜ)., showcasing ambitions to rival or surpass the West.
The European Union runs the decade-long Quantum Flagship Program, bringing together France, Germany, and the Netherlands as major research hubs. Europe¡¯s focus lies in cross-border collaboration and standardization, aiming to shape the technical and regulatory foundations of the global market.
Despite their differing strategies, the U.S., China, and Europe share one conviction: whoever masters quantum technology will dominate the information order of the 21st century. Quantum supremacy has become the new arms race, defining power not by weapons but by computation.
Korea¡¯s Quantum Challenge — The First Step Toward Technological Sovereignty
South Korea, too, has entered the age of national quantum strategy. In 2024, the government released its National Quantum Technology Roadmap, pledging an investment of over ₩1 trillion (about $750 million) by 2035. The Ministry of Science and ICT set concrete milestones: a 50-qubit quantum computer by 2030 and 1,000 qubits by 2040.
Research institutions are taking specialized roles. ETRI focuses on quantum communication, KIST on quantum sensors, and KAIST on quantum-chip design. The Korea Electronics Technology Institute (KETI) leads industrial-application projects that connect academia and private enterprise.
Corporate participation is expanding as well. Samsung Electronics and SK hynix are pursuing .quantum-semiconductor. research through silicon-spin qubits, exploring convergence between traditional chips and quantum architectures. LG Uplus successfully commercialized a quantum-encryption communication line between Seoul and Busan, one of the world¡¯s longest operational quantum-secure networks.
Nevertheless, challenges remain substantial. Korea faces a shortage of quantum specialists, a weak domestic equipment supply chain, and limited industrial demand. To bridge the gap, the country must adopt a ¡°collaborative strategy.¡± This means combining state-led basic research with joint development involving global universities and corporations.
Korea¡¯s most realistic path lies in focusing on strength areas—quantum security infrastructure, advanced materials, and semiconductor integration—rather than competing head-to-head in large-scale hardware races. The key to .quantum sovereignty. will be selective excellence and international cooperation.
The Ethics of Uncertainty — How Technological Gaps Create New Inequality
As quantum computing becomes mainstream, the gap in technological capability may soon translate into a new form of social and geopolitical inequality.
Between nations that possess quantum computers and those that do not, there will emerge an asymmetric .¡°sovereignty of computation.¡±.
Once quantum machines render classical encryption obsolete, the safety of financial, medical, and defense data will be fundamentally shaken. The U.S. NSA and South Korea¡¯s National Intelligence Service are already executing transition plans toward .Post-Quantum Cryptography (PQC)., while the International Organization for Standardization (ISO) is expected to finalize PQC standards by 2027.
Quantum technology is capable of simultaneously processing and decrypting human privacy, corporate data, and national secrets. It is, in essence, an ultra-connected calculator that demands new ethical and governance frameworks.
If humanity fails to control the technology, the technology will inevitably begin to control humanity.
The Post-AI World — A New Civilization of Computation
If artificial intelligence mimics the way humans think, quantum computing mimics the way nature itself computes. AI is about data-driven reasoning; quantum computing is about probabilistic exploration of reality.
By the 2030s, quantum computing will move beyond laboratories and become a foundational industrial infrastructure. Combined with AI, quantum simulators will enable impossible feats—climate prediction, molecular drug design, and urban-system optimization—transforming industries once considered too complex to compute.
Quantum computing is not a race for faster machines; it is a redefinition of how civilization itself operates.
Humanity now steps into an era not of .faster computation., but of .deeper computation.—a world where probability, not certainty, becomes the true language of intelligence.
¾çÀÚÄÄÇ»ÆÃ ´ëÀü: ±â¼úÀÌ ¹®¸íÀ» ´Ù½Ã ¼³°èÇÑ´Ù
¡ª AI¸¦ ³Ñ¾î, ¼¼°è ÆÐ±ÇÀÇ ´ÙÀ½ ÀüÀåÀ¸·Î
¼ÓµµÀÇ °æÀïÀº ³¡³µ°í, ÀÌÁ¦ ¼¼°è´Â ¡®°è»êÀÇ ¹æ½Ä¡¯À» ³õ°í ½Î¿î´Ù. ¾çÀÚÄÄÇ»ÆÃÀº ´õ ºü¸¥ ±â°è°¡ ¾Æ´Ï¶ó, Àΰ£ÀÌ Çö½ÇÀ» ÀÌÇØÇÏ´Â ¾ð¾î ÀÚü¸¦ ´Ù½Ã ¾²´Â ±â¼úÀÌ´Ù. AI°¡ »ç°í¸¦ Èä³»³Â´Ù¸é, ¾çÀÚ´Â Á¸ÀçÀÇ ¹ýÄ¢À» °è»êÇÏ·Á´Â ¹®¸íÀÇ ½ÇÇèÀÌ´Ù.
°è»êÀÇ °æ°è¸¦ ³Ñ´Ù ¡ª 0°ú 1 »çÀÌ¿¡ ¼û°ÜÁø ¼¼°è
20¼¼±â ÈĹݺÎÅÍ ÀηùÀÇ Áøº¸¸¦ À̲ö °ÍÀº µðÁöÅÐ °è»êÀ̾ú´Ù. 0°ú 1, ´Ü µÎ °³ÀÇ ¼ýÀÚ°¡ ¸ðµç µ¥ÀÌÅÍ¿Í ³í¸®¸¦ Ç¥ÇöÇÏ¸ç ¼¼°è ¹®¸íÀ» À籸¼ºÇß´Ù. ±×·¯³ª ¹ÝµµÃ¼ °øÁ¤ÀÇ ¹°¸®Àû ÇѰè¿Í ¹«¾îÀÇ ¹ýÄ¢ÀÇ µÐȰ¡ Çö½ÇÀÌ µÇ¸é¼, Àΰ£Àº ´õ ÀÌ»ó ¼Óµµ¿Í È¿À²·Î¸¸ ¹ßÀüÀ» À̾ ¼ö ¾ø´Â ÁöÁ¡¿¡ µµ´ÞÇß´Ù.
¾çÀÚÄÄÇ»ÆÃ(Quantum Computing)Àº ¹Ù·Î ÀÌ Á¤Ã¼ÀÇ º®À» µ¹ÆÄÇÏ·Á´Â ½Ãµµ´Ù. ÀÌ ±â¼úÀº ´Ü¼øÈ÷ ´õ ºü¸¥ ÄÄÇ»ÅͰ¡ ¾Æ´Ï¶ó, ¡°°è»êÀÇ ¿ø¸®¸¦ »õ·Î ¾²´Â Çõ¸í¡±ÀÌ´Ù. °íÀüÀû ÄÄÇ»ÅͰ¡ È®Á¤µÈ »óÅÂ(0 ¶Ç´Â 1)¿¡¼ ³í¸®¸¦ Àü°³ÇÑ´Ù¸é, ¾çÀÚÄÄÇ»ÅÍ´Â ±× »çÀÌÀÇ È®·ü °ø°£À» µ¿½Ã¿¡ Ž»öÇÑ´Ù.
2023³â ±¸±ÛÀº ÀÚ»ç Ĩ ¡®Sycamore 2¡¯¸¦ ÅëÇØ 241ÃÊ ¸¸¿¡ ƯÁ¤ È®·ü ºÐÆ÷¸¦ °è»êÇߴµ¥, ÀÌ´Â ±âÁ¸ ½´ÆÛÄÄÇ»Åͷδ 47³âÀÌ °É¸± ¿¬»êÀ̾ú´Ù°í ¹ßÇ¥Çß´Ù. IBMÀº 2024³â ¡®Condor¡¯ ĨÀ» °ø°³Çϸç 1,000Å¥ºñÆ® ´Þ¼ºÀ» ¼±¾ðÇß´Ù. ÀÌó·³ ¾çÀÚÄÄÇ»ÆÃÀº ´õ ÀÌ»ó ¹Ì·¡ÀÇ Ãß»óÀÌ ¾Æ´Ï¶ó, »ê¾÷ °æÀïÀÇ Çö½ÇÀûÀÎ Àü¼±À¸·Î µîÀåÇϰí ÀÖ´Ù.
Å¥ºñÆ®¿Í ¾ôÈû ¡ª È®·ü·Î °è»êÇÏ´Â µÎ³úÀÇ Åº»ý
¾çÀÚÄÄÇ»ÅÍÀÇ ÇÙ½ÉÀº Å¥ºñÆ®(Qubit)´Ù. °íÀü ÄÄÇ»ÅÍÀÇ ºñÆ®(bit)°¡ 0°ú 1 Áß ÇϳªÀÇ »óŸ¸ °¡Áú ¼ö ÀÖ´Â ¹Ý¸é, Å¥ºñÆ®´Â µÎ »óŰ¡ µ¿½Ã¿¡ Á¸ÀçÇÏ´Â Áßø(Superposition) »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖ´Ù. ±×¸®°í ¼·Î ´Ù¸¥ Å¥ºñÆ®µéÀÌ ¾ôÈû(Entanglement) »óÅ¿¡ ³õÀ̸é, ÇϳªÀÇ Å¥ºñÆ® »óÅ º¯È°¡ ´Ù¸¥ Å¥ºñÆ®¿¡ Áï½Ã ¹Ý¿µµÇ´Â ³î¶ó¿î »ó°ü°ü°è°¡ »ý±ä´Ù.
ÀÌ µÎ °¡Áö ¿ø¸®¸¦ ÅëÇØ ¾çÀÚÄÄÇ»ÅÍ´Â ±âÁ¸ ÄÄÇ»ÅͰ¡ Á÷·ÄÀûÀ¸·Î ¼öÇàÇØ¾ß ÇÏ´Â ¿¬»êÀ» º´·ÄÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ´Ù. ¿¹ÄÁ´ë ¼öõ °³ÀÇ ºÐÀÚ ±¸Á¶¸¦ µ¿½Ã¿¡ Ž»öÇϰųª, ÃÖÀûÀÇ ¹°·ù °æ·Î¸¦ ÇÑ ¹ø¿¡ °è»êÇÏ´Â ÀÏÀÌ °¡´ÉÇØÁø´Ù. ÀÌ´Â ´Ü¼øÈ÷ ¼ÓµµÀÇ ¹®Á¦°¡ ¾Æ´Ï¶ó ¡®°è»ê ¹æ¹ý·ÐÀÇ Çõ½Å¡¯ÀÌ´Ù.
±×·¯³ª Å¥ºñÆ®´Â ¿ÜºÎ ȯ°æ¿¡ ±Øµµ·Î ¹Î°¨ÇÏ´Ù. Áø°ø, ÃÊÀú¿Â, ÀÚ±âÀå ³ëÀÌÁî µî ÀÛÀº º¯È¿¡µµ ¿À·ù°¡ ¹ß»ýÇÑ´Ù. À̸¦ ÇØ°áÇϱâ À§ÇØ ¾çÀÚ ¿À·ù Á¤Á¤(Quantum Error Correction) ±â¼úÀÌ °³¹ßµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÏÁ¾ÀÇ ¡°ÀÚ±â Ä¡À¯ ¿¬»ê ±¸Á¶¡±¶ó ÇÒ ¼ö ÀÖ´Ù. 2025³â ÇöÀç IBM°ú Rigetti´Â 99.9% ¼öÁØÀÇ °áÇÕµµ(fidelity)¸¦ ´Þ¼ºÇßÀ¸¸ç, ÇâÈÄ »ó¿ëÈ ±âÁØÀº 99.999% ÀÌ»óÀ¸·Î Àü¸ÁµÈ´Ù.
Çϵå¿þ¾î ÆÐ±Ç °æÀï ¡ª ÃÊÀüµµ¡¤ÀÌ¿ÂÆ®·¦¡¤±¤ÀÚ¡¤½ºÇÉÀÇ ÀüÀï
¾çÀÚÄÄÇ»ÆÃÀÇ ÁøÂ¥ ÀüÀåÀº Çϵå¿þ¾î´Ù. ¾î¶² ¹æ½ÄÀ¸·Î Å¥ºñÆ®¸¦ ±¸ÇöÇÏ´À³Ä¿¡ µû¶ó ±â¼úÀû Á¤Ã¼¼º°ú ½ÃÀåÀÇ ÁÖµµ±ÇÀÌ °áÁ¤µÈ´Ù.
°¡Àå ¾Õ¼ ÀÖ´Â °ÍÀº ÃÊÀüµµ(Superconducting) Å¥ºñÆ®´Ù. IBM°ú GoogleÀÌ ´ëÇ¥ ÁÖÀÚÀ̸ç, ÀÌ¹Ì ¼ö¹é Å¥ºñÆ® ´ÜÀ§ÀÇ ÇÁ·ÎÅäŸÀÔÀ» ¿î¿µÇϰí ÀÖ´Ù. ´Ù¸¸ Àý´ë¿Âµµ¿¡ °¡±î¿î ±ØÀú¿Â(–273¡É) ȯ°æÀÌ ÇÊ¿äÇÏ´Ù´Â Á¡ÀÌ »ó¿ëÈÀÇ °É¸²µ¹ÀÌ´Ù.
ÀÌ¿ÂÆ®·¦(Trapped-ion) ¹æ½ÄÀº Quantinuum°ú IonQ°¡ ÁÖµµÇÑ´Ù. À̵éÀº ÀüÀÚ±âÀåÀ» ÀÌ¿ëÇØ ÀÌ¿ÂÀ» °øÁß¿¡ ¶ç¿ö Á¦¾îÇϴµ¥, ³ëÀÌÁî¿¡ °ÇÏ°í ¾ôÈû Á¶ÀÛÀÌ Á¤±³ÇÏ´Ù´Â ÀåÁ¡ÀÌ ÀÖ´Ù. ´Ù¸¸ Á¦¾î ÀåÄ¡°¡ Å©°í, ¿¬»ê ¼Óµµ°¡ ´Ù¼Ò ´À¸®´Ù.
±¤ÀÚ(Photonic) ±â¹Ý ±â¼úÀº ºûÀÇ ÀÔÀÚ¸¦ Å¥ºñÆ®·Î Ȱ¿ëÇÑ´Ù. ij³ª´ÙÀÇ Xanadu¿Í ¿µ±¹ÀÇ PsiQuantumÀº ÀÌ ¹æ½ÄÀ¸·Î ½Ç¿Â ÀÛµ¿ÀÌ °¡´ÉÇÑ ¾çÀÚÄÄÇ»Å͸¦ °³¹ß ÁßÀÌ´Ù. ±âÁ¸ Åë½Å ÀÎÇÁ¶ó¿Í ÅëÇÕÀÌ ¿ëÀÌÇϰí, ³Ã°¢ºñ¿ëÀÌ Àû´Ù´Â Á¡¿¡¼ Àå±âÀû ÀáÀç·ÂÀÌ Å©´Ù.
½Ç¸®ÄÜ ½ºÇÉ(Silicon-spin) ¹æ½ÄÀº ¹ÝµµÃ¼ °øÁ¤°ú ȣȯµÇ¾î Çѱ¹, ÀϺ», ³×´ú¶õµå°¡ ƯÈ÷ ÁÖ¸ñÇϰí ÀÖ´Ù. »ï¼ºÀüÀÚ ¿ª½Ã ¾çÀڹݵµÃ¼ ¿¬±¸¸¦ º»°ÝÈÇϸç, ¡®¹ÝµµÃ¼-¾çÀÚĨ À¶ÇÕ¡¯ °¡´É¼ºÀ» Ž»öÇϰí ÀÖ´Ù.
ÀÌ ¸ðµç ±â¼úÀº °á±¹ ¡°È®À强(scalability)¡±À̶ó´Â ´Ü ÇϳªÀÇ ¸ñÇ¥¸¦ ÇâÇØ ´Þ¸®°í ÀÖ´Ù. IBMÀº 2033³â±îÁö 10¸¸ Å¥ºñÆ® ¸Ó½ÅÀ», Áß±¹ °úÇпøÀº 2030³â±îÁö 100¸¸ Å¥ºñÆ® ½Ã¹Ä·¹ÀÌÅ͸¦ ¿¹°íÇß´Ù. ±¹°¡ Àü·«ÀÇ ¹«´ë°¡ ÀÌÁ¦ ³Ã°¢ è¹ö¿Í Áø°ø½Ç ¾ÈÀ¸·Î ¿Å°Ü°£ ¼ÀÀÌ´Ù.
¼ÒÇÁÆ®¿þ¾îÀÇ ÁøÈ ¡ª ¾çÀÚ ¾Ë°í¸®ÁòÀÌ »ê¾÷À» ¹Ù²Û´Ù
Çϵå¿þ¾î°¡ ¸öÀ̶ó¸é, ¼ÒÇÁÆ®¿þ¾î´Â ¾çÀÚÄÄÇ»ÅÍÀÇ ¿µÈ¥ÀÌ´Ù. ¾çÀÚ ¾Ë°í¸®ÁòÀº ±âÁ¸ ÄÄÇ»ÅÍ¿Í ÀüÇô ´Ù¸¥ ³í¸®¸¦ µû¸¥´Ù.
´ëÇ¥ÀûÀÎ ¿¹°¡ ¼î¾î(Shor) ¾Ë°í¸®ÁòÀÌ´Ù. ÀÌ´Â ¼ÒÀμöºÐÇØ ¹®Á¦¸¦ °íÀü ¾Ë°í¸®Áòº¸´Ù ¼öõ ¹è ºü¸£°Ô ÇØ°áÇÒ ¼ö ÀÖ¾î, ¿À´Ã³¯ ¾Ïȣü°èÀÇ ±Ùº»À» À§ÇùÇÑ´Ù. ½ÇÁ¦·Î ¼î¾î ¾Ë°í¸®ÁòÀÌ ¿ÏÀü ±¸ÇöµÇ¸é, RSA ¾ÏÈ£³ª ºí·ÏüÀÎ º¸¾Èµµ ¹«¿ëÁö¹°ÀÌ µÉ ¼ö ÀÖ´Ù.
¶Ç ´Ù¸¥ ´ëÇ¥´Â ±×·Î¹ö(Grover) ¾Ë°í¸®ÁòÀ¸·Î, ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼Ó¿¡¼ ƯÁ¤ Ç׸ñÀ» Ž»öÇÏ´Â ¼Óµµ¸¦ Á¦°ö±Ù ¼öÁØÀ¸·Î Çâ»ó½ÃŲ´Ù. ÀÌ·¯ÇÑ ±¸Á¶´Â °Ë»ö¿£Áø, Ãßõ ¾Ë°í¸®Áò, ÀΰøÁö´ÉÀÇ µ¥ÀÌÅÍ Ã³¸®¿¡µµ ÀÀ¿ëµÉ ¼ö ÀÖ´Ù.
»ê¾÷°è¿¡¼´Â ÇÏÀ̺긮µå ±¸Á¶(Quantum–Classical Hybrid)°¡ ºü¸£°Ô È®»ê ÁßÀÌ´Ù. IBM Q Network, Amazon Braket, Microsoft Azure Quantum µîÀÌ ´ëÇ¥ÀûÀÌ´Ù. À̵éÀº ±â¾÷ÀÌ Á÷Á¢ Àåºñ¸¦ º¸À¯ÇÏÁö ¾Ê¾Æµµ Ŭ¶ó¿ìµå¸¦ ÅëÇØ ¾çÀÚ ¸®¼Ò½º¸¦ ºô·Á ¾µ ¼ö ÀÖ°Ô ÇÑ´Ù.
½ÇÁ¦ »ç·Ê·Î, ¸ÓÅ©(Merck)´Â ½Å¾à Èĺ¸¹°Áú Ž»öÀ» À§ÇØ ¾çÀÚ ½Ã¹Ä·¹À̼ÇÀ» Ȱ¿ëÇϰí, JP¸ð°ÇüÀ̽º´Â ±ÝÀ¶ Æ÷Æ®Æú¸®¿À ÃÖÀûÈ ¹®Á¦¿¡ ¾çÀÚ ¾Ë°í¸®ÁòÀ» Àû¿ë ÁßÀÌ´Ù. ¾çÀÚÄÄÇ»ÆÃÀº ÀÌ¹Ì ¡°³í¹® ¼Ó ±â¼ú¡±¿¡¼ ¡°»ê¾÷ ¼Ó ±â¼ú¡±·Î ³Ñ¾î°¡°í ÀÖ´Ù.
»ê¾÷ÀÇ Áö°¢ º¯µ¿ ¡ª ¾çÀÚ±â¼úÀÌ Èçµå´Â ´Ù¼¸ °³ÀÇ ºÐ¾ß
¾çÀÚÄÄÇ»ÆÃÀº ƯÁ¤ »ê¾÷À» ³Ñ¾î, °æÁ¦ Àü¹ÝÀÇ ±ÔÄ¢À» ´Ù½Ã ¾²°í ÀÖ´Ù. ´Ù¸¸ ÇöÀç °¡Àå ºü¸£°Ô ¿òÁ÷ÀÌ´Â ºÐ¾ß´Â ´Ù¼¸ °¡Áö·Î ¿ä¾àµÈ´Ù.
¨ç º¸¾È°ú ¾ÏÈ£ÀÇ Á¾¸»
¹Ì±¹ NSA´Â ÀÌ¹Ì ¡®¾çÀÚ³»¼º¾ÏÈ£(PQC)¡¯ Àüȯ ·Îµå¸ÊÀ» ¹ßÇ¥Çß´Ù. ±¸±Û°ú ¾ÖÇÃÀº ÀÚü ¾ÏÈ£ ÇÁ·ÎÅäÄÝ¿¡ PQC ¾Ë°í¸®ÁòÀ» ÅëÇÕ ÁßÀ̸ç, Çѱ¹ÀÇ KISAµµ ¾çÀÚº¸¾È ³×Æ®¿öÅ© Ç¥ÁØÈ¸¦ ÃßÁøÇϰí ÀÖ´Ù.
¨è ½Å¾à°ú ½Å¼ÒÀç °³¹ß
¾çÀÚ ½Ã¹Ä·¹À̼ÇÀº ½Å¾à È帱ºÀÇ ÈÇÐ ¹ÝÀÀÀ» Á¤¹Ð ¿¹ÃøÇØ ½ÇÇè ´Ü°è¸¦ ´ÜÃà½ÃŲ´Ù. Á¦¾à»ç ·Î½´(Roche)´Â À̸¦ ÅëÇØ Ç×¾Ï Èĺ¸¹°Áú ¹ß±¼ ¼Óµµ¸¦ 4¹è ´ÜÃàÇß´Ù°í ¹àÇû´Ù. LGÈÇеµ ¾çÀÚ ½Ã¹Ä·¹À̼ÇÀ» ¹èÅ͸® ¼ÒÀç ¼³°è¿¡ µµÀÔ ÁßÀÌ´Ù.
¨é ±ÝÀ¶°ú ¸®½ºÅ© ºÐ¼®
JP¸ð°Ç, °ñµå¸¸»è½º, µµÀÌü¹æÅ©´Â ¾çÀÚ ¾Ë°í¸®Áò ±â¹ÝÀÇ À§Çè ¸ðµ¨¸µ ¿¬±¸¸¦ ÁøÇà ÁßÀÌ´Ù. ÀÌ´Â ºÒÈ®½Ç¼º ÇÏÀÇ ÃÖÀû °áÁ¤À» °è»êÀûÀ¸·Î Áö¿øÇÏ´Â ¹æÇâÀ¸·Î ¹ßÀüÇϰí ÀÖ´Ù.
¨ê ¹°·ù¡¤¿¡³ÊÁö ÃÖÀûÈ
µµ¿äŸ´Â Â÷·® À̵¿°æ·Î ÃÖÀûÈ ½ÇÇè¿¡ ¾çÀÚ ½Ã¹Ä·¹À̼ÇÀ» Àû¿ëÇßÀ¸¸ç, ÀϺ»ÀÇ ¿¡³ÊÁö±â¾÷ TEPCO´Â Àü·Â¸Á ±ÕÇü Á¶Á¤ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ D-Wave ½Ã½ºÅÛÀ» Å×½ºÆ®Çϰí ÀÖ´Ù.
¨ë ÀΰøÁö´É°úÀÇ À¶ÇÕ
±¸±ÛÀº ¡®Quantum AI Lab¡¯À» ÅëÇØ ¾çÀڸӽŷ¯´×(QML) ¿¬±¸¸¦ ÃßÁøÇϰí ÀÖ´Ù. ÀÌ´Â ´ë±Ô¸ð AI ¸ðµ¨ÀÇ ÇнÀ È¿À²À» ȹ±âÀûÀ¸·Î °³¼±ÇÒ °¡´É¼ºÀ» Áö´Ñ´Ù. AI°¡ µ¥ÀÌÅ͸¦ ¡°ÀÌÇØ¡±ÇÑ´Ù¸é, ¾çÀÚ´Â ±× µ¥ÀÌÅ͸¦ ¡°½Ã¹Ä·¹À̼ǡ±ÇÑ´Ù.
ÀÚº»°ú ½ºÅ¸Æ®¾÷ÀÇ ÁúÁÖ ¡ª ¾çÀÚ »ýŰ谡 Æø¹ßÇÑ´Ù
¾çÀÚÄÄÇ»ÆÃÀº ¡®¹Ì·¡ ±â¼ú¡¯ÀÌ ¾Æ´Ï¶ó ¡®ÇöÀç ÅõÀÚ»ê¾÷¡¯ÀÌ´Ù.
Àü ¼¼°è ¾çÀÚ °ü·Ã ½ºÅ¸Æ®¾÷Àº 2025³â ±âÁØ ¾à 80°³¸¦ ³Ñ¾ú°í, ´©Àû ÅõÀÚ¾×Àº 150¾ï ´Þ·¯¸¦ µ¹ÆÄÇß´Ù. ij³ª´ÙÀÇ Xanadu, ¹Ì±¹ÀÇ IonQ, ¿µ±¹ÀÇ Quantinuum, µ¶ÀÏÀÇ IQM, È£ÁÖÀÇ Silicon Quantum Computing µîÀº ±¹°¡ Àü·«±â¾÷À¸·Î ¼ºÀåÇß´Ù.
º¥Ã³Ä³ÇÇÅÐ ½ÃÀå¿¡¼µµ ¡°Quantum as a Service(QaaS)¡± ¸ðµ¨ÀÌ ºÎ»ó ÁßÀÌ´Ù. À̴ Ŭ¶ó¿ìµå ±â¹ÝÀ¸·Î ¾çÀÚÄÄÇ»ÆÃÀ» ±¸µ¶Çü ¼ºñ½º·Î Á¦°øÇÏ´Â ÇüÅ´Ù. AmazonÀº ÀÌ¹Ì ¡®AWS Braket¡¯À» ÅëÇØ °í°´»ç¿¡°Ô ½ÇÇè¿ë ¾çÀÚ ¸®¼Ò½º¸¦ ´ë¿©Çϰí ÀÖÀ¸¸ç, ÀϺ»ÀÇ NTT´Â ÀÚü ¾çÀÚ Å¬¶ó¿ìµå Å×½ºÆ®º£µå¸¦ °ø°³Çß´Ù.
McKinsey¿¡ µû¸£¸é, 2035³â Àü ¼¼°è ¾çÀÚÄÄÇ»ÆÃ »ê¾÷ÀÇ °æÁ¦Àû ÆÄ±ÞÈ¿°ú´Â ¾à 7,000¾ï ´Þ·¯(¾à 950Á¶ ¿ø)¿¡ ´ÞÇÒ Àü¸ÁÀÌ´Ù.
ƯÈ÷ ±ÝÀ¶, Á¦¾à, ÈÇÐ, ¹°·ù »ê¾÷ÀÇ È¿À² °³¼± È¿°ú°¡ GDPÀÇ 2~3%¸¦ Ãß°¡·Î ²ø¾î¿Ã¸± ¼ö ÀÖ´Ù´Â ºÐ¼®µµ ÀÖ´Ù.
±â¼úÆÐ±ÇÀÇ ÀüÀå ¡ª ¹Ì±¹¡¤Áß±¹¡¤À¯·´ÀÇ ¾çÀÚÁöÁ¤ÇÐ
¾çÀÚÄÄÇ»ÆÃÀº °úÇбâ¼úÀ» ³Ñ¾î ±¹°¡¾Èº¸ÀÇ ¹®Á¦·Î ºÎ»óÇß´Ù.
¹Ì±¹Àº ¡®±¹°¡¾çÀÚÀÌ´Ï¼ÅÆ¼ºê¹ý(NQI Act)¡¯À» ÅëÇØ ¿¬±¸¡¤»ê¾÷¡¤º¸¾È Á¤Ã¥À» ÅëÇÕ °ü¸®Çϰí ÀÖ´Ù. ¹é¾Ç°ü »êÇÏ ¾çÀÚÀ§¿øÈ¸°¡ ¹Î°£±â¾÷, ´ëÇÐ, ±¹¹æºÎ¸¦ ¾Æ¿ì¸£´Â ³×Æ®¿öÅ©¸¦ ±¸ÃàÇØ ¡®¾çÀÚ ¸®´õ½Ê¡¯À» È®º¸ÇÏ·Á ÇÑ´Ù.
Áß±¹Àº ¡®¾çÀÚ±¼±â(Quantum Rise)¡¯ Àü·«À» ¼±¾ðÇϰí, 100¾ï ´Þ·¯ ±Ô¸ðÀÇ ¾çÀÚ¿¬±¸¼¾Å͸¦ ÇãÆäÀÌ¿¡ ¼³¸³Çß´Ù. 2020³â ¼¼°è ÃÖÃÊÀÇ ¾çÀÚÅë½Å À§¼º ¡®¹¬ÀÚÈ£(ÙøíûÜ)¡¯¸¦ ¹ß»çÇßÀ¸¸ç, 2023³â¿¡´Â 200Å¥ºñÆ® ¾çÀÚÄÄÇ»ÅÍ ¡®ÁÖû(ðÓõøñý) 3È£¡¯¸¦ °ø°³Çß´Ù.
À¯·´¿¬ÇÕ(EU)Àº 10³â ´ÜÀ§ ´ëÇü ÇÁ·ÎÁ§Æ®ÀÎ Quantum FlagshipÀ» °¡µ¿ ÁßÀÌ´Ù. ÇÁ¶û½º, µ¶ÀÏ, ³×´ú¶õµå°¡ ¿¬±¸ °ÅÁ¡ÀÌ µÇ¾î ±â¼úÇ¥ÁØÈ¸¦ ÁÖµµÇϰí ÀÖ´Ù.
ÀÌ ¼¼ Áö¿ªÀÇ Àü·«Àº °¢±â ´Ù¸£Áö¸¸, °øÅëµÈ ¸ñÇ¥´Â Çϳª´Ù. ¡°¾çÀÚ±â¼úÀ» Áö¹èÇÏ´Â ÀÚ°¡ 21¼¼±â Á¤º¸ ÆÐ±ÇÀ» Áå´Ù.¡±
Çѱ¹ÀÇ µµÀü ¡ª ¾çÀÚÁÖ±ÇÀ» ÇâÇÑ Ã¹°ÉÀ½
Çѱ¹µµ º»°ÝÀûÀÎ ¾çÀÚ ±¹°¡Àü·« ½Ã´ë¿¡ ÁøÀÔÇϰí ÀÖ´Ù.
2024³â Çѱ¹ Á¤ºÎ´Â ¡®¾çÀÚ±â¼ú ±¹°¡·Îµå¸Ê¡¯À» ¹ßÇ¥Çϸç, 2035³â±îÁö 1Á¶ ¿ø ±Ô¸ð ÅõÀÚ¸¦ ¼±¾ðÇß´Ù. °úÇбâ¼úÁ¤º¸Åë½ÅºÎ´Â 2030³â±îÁö 50Å¥ºñÆ® ¾çÀÚÄÄÇ»ÅÍ, 2040³â±îÁö 1,000Å¥ºñÆ® ´Þ¼ºÀ» ¸ñÇ¥·Î ÇÑ´Ù.
ETRI, KIST, KAIST´Â °¢°¢ ¾çÀÚÅë½Å, ¾çÀÚ¼¾¼, ¾çÀÚĨ °³¹ßÀ» ´ã´çÇϰí ÀÖÀ¸¸ç, Çѱ¹ÀüÀÚ±â¼ú¿¬±¸¿ø(KETI)Àº »ê¾÷ÀÀ¿ë Áß½ÉÀÇ Çù·Â ÇÁ·ÎÁ§Æ®¸¦ ÁÖµµÇÑ´Ù.
¶ÇÇÑ »ï¼ºÀüÀÚ, SKÇÏÀ̴нº µîÀº ¡®¾çÀڹݵµÃ¼¡¯¶ó´Â °³³äÀ» µµÀÔÇØ ½Ç¸®ÄÜ ½ºÇÉÅ¥ºñÆ® ¿¬±¸¸¦ °ÈÇϰí ÀÖ´Ù. LGÀ¯Ç÷¯½º´Â ¾çÀÚ¾ÏÈ£Åë½Å¸ÁÀ» ¼¿ï–ºÎ»ê ±¸°£¿¡ »ó¿ëÈÇß´Ù.
´Ù¸¸ °úÁ¦µµ Å©´Ù. Àη³, »ýÅÂ°è ºÎÁ·, Àåºñ ÀÇÁ¸µµ°¡ ³ô±â ¶§¹®ÀÌ´Ù. µû¶ó¼ Çѱ¹Àº ¡®Çù·ÂÇü Àü·«¡¯À» ¼±ÅÃÇØ¾ß ÇÑ´Ù. ±¹³» ¿¬±¸±â°ü Áß½ÉÀÇ ±âÃÊ¿¬±¸¿Í ±Û·Î¹ú ±â¾÷¡¤´ëÇаúÀÇ °øµ¿ °³¹ßÀ» º´ÇàÇϰí, ¡®¾çÀÚ º¸¾È¡¯°ú ¡®¼ÒÀç ºÐ¾ß¡¯¿¡ ÁýÁß ÅõÀÚÇÏ´Â °ÍÀÌ Çö½ÇÀûÀÌ´Ù.
ºÒÈ®½Ç¼ºÀÇ À±¸® ¡ª ±â¼ú °ÝÂ÷°¡ ¸¸µå´Â »õ·Î¿î ºÒÆòµî
¾çÀÚÄÄÇ»ÆÃÀÌ º»°ÝȵǸé, ±â¼ú °ÝÂ÷´Â °ð »çȸ °ÝÂ÷·Î ¹øÁú ¼ö ÀÖ´Ù.
¾çÀÚÄÄÇ»Å͸¦ °¡Áø ±¹°¡¿Í ±×·¸Áö ¸øÇÑ ±¹°¡ »çÀÌ¿¡´Â ¡®°è»ê ÁÖ±ÇÀÇ ºñ´ëĪ¡¯ÀÌ »ý±æ °ÍÀÌ´Ù.
¶ÇÇÑ ±âÁ¸ ¾Ïȣü°è°¡ ¹«·ÂÈµÇ¸é ±ÝÀ¶¡¤ÀǷᡤ±¹¹æ µ¥ÀÌÅÍÀÇ ¾ÈÀü¼ºÀº ±Ùº»ÀûÀ¸·Î Èçµé¸°´Ù. ÀÌ¹Ì ¹Ì±¹ NSA¿Í Çѱ¹ ±¹Á¤¿øÀº Æ÷½ºÆ®¾çÀÚ¾ÏÈ£(PQC) Àüȯ °èȹÀ» ½ÇÇà ÁßÀ̸ç, ±¹Á¦Ç¥ÁØÈ±â±¸(ISO)´Â 2027³â PQC Ç¥ÁØÀ» È®Á¤ÇÒ ¿¹Á¤ÀÌ´Ù.
ÀÌ ±â¼úÀº Àΰ£ÀÇ »ç»ýȰ, ±â¾÷ÀÇ µ¥ÀÌÅÍ, ±¹°¡ÀÇ ºñ¹Ð±îÁö ÇѲ¨¹ø¿¡ ¿¬»êÇÒ ¼ö ÀÖ´Â ¡®ÃÊ¿¬°á °è»ê±â¡¯À̱⵵ ÇÏ´Ù. µû¶ó¼ ±â¼ú À±¸®¿Í °Å¹ö³Í½º´Â ¾çÀÚ ½Ã´ëÀÇ Çʼö Á¶°ÇÀÌ´Ù. ±â¼úÀ» ÅëÁ¦ÇÏÁö ¸øÇϸé, ±â¼úÀÌ Àΰ£À» ÅëÁ¦ÇÏ°Ô µÈ´Ù.
Æ÷½ºÆ® AIÀÇ ¼¼°è ¡ª ¾çÀÚ°¡ ¿©´Â °è»ê ¹®¸í
AI°¡ Àΰ£ÀÇ »ç°í¸¦ ¸ð¹æÇß´Ù¸é, ¾çÀÚÄÄÇ»ÆÃÀº ÀÚ¿¬ÀÇ °è»ê¹ýÀ» ¸ð¹æÇÑ´Ù. AI´Â ¡®µ¥ÀÌÅÍ ±â¹Ý Ã߷С¯À̶ó¸é, ¾çÀÚ´Â ¡®È®·üÀû Çö½ÇÀÇ Å½»ö¡¯ÀÌ´Ù.
2030³â´ë, ¾çÀÚÄÄÇ»ÆÃÀº ½ÇÇè½ÇÀ» ¹þ¾î³ª »ê¾÷ ÇöÀåÀÇ ±âº» ÀÎÇÁ¶ó°¡ µÉ °ÍÀÌ´Ù.
AI¿Í °áÇÕÇÑ ¾çÀڽùķ¹ÀÌÅÍ´Â ±âÈÄ ¿¹Ãø, ½Å¾à ¼³°è, µµ½Ã ½Ã½ºÅÛ ÃÖÀûÈ µî ¡®ºÒ°¡´ÉÇÑ °è»ê¡¯À» °¡´ÉÇÏ°Ô ¸¸µç´Ù.
¾çÀÚÄÄÇ»ÆÃÀº ´Ü¼øÇÑ ¼Óµµ °æÀïÀÇ ±â¼úÀÌ ¾Æ´Ï¶ó, ¹®¸íÀÇ ÀÛµ¿ ¿ø¸®¸¦ ÀçÁ¤ÀÇÇÏ´Â Çõ¸íÀÌ´Ù.
Àηù´Â ÀÌÁ¦ ¡®´õ ºü¸¥ ÄÄÇ»ÅÍ¡¯°¡ ¾Æ´Ï¶ó ¡®´õ ±íÀÌ °è»êÇÏ´Â ¹®¸í¡¯À¸·Î ÁøÀÔÇϰí ÀÖ´Ù.