¸ñ·Ï

Home

åǥÁö

¹«¾îÀÇ ¹ýÄ¢ ÀÌÈÄÀÇ ÄÄÇ»ÆÃ, ¾îµð·Î °¡´Â°¡

Áö³­ 60³â°£ µðÁöÅÐ Çõ½ÅÀ» À̲ö °¡Àå À§´ëÇÑ ¿£Áø Áß Çϳª´Â ¹Ù·Î ¹«¾îÀÇ ¹ýÄ¢(Moore's Law)À̾ú´Ù. 1965³â, ÀÎÅÚ °øµ¿ ⸳ÀÚ °íµç ¹«¾î´Â ¡°Ä¨ À§ÀÇ Æ®·£Áö½ºÅÍ ¼ö°¡ 2³â¸¶´Ù µÎ ¹è°¡ µÈ..





Computing After Moore's Law: Where Are We Heading?

The End of the Moore's Law Era
One of the greatest engines of digital innovation over the past 60 years has been Moore's Law. In 1965, Gordon Moore, co-founder of Intel, observed that "the number of transistors on a chip doubles every two years," and this simple observation became the compass for the global semiconductor industry. The increase in the number of transistors led to faster speeds, improved power efficiency, and lower manufacturing costs, enabling computers to evolve to become smaller, faster, and more affordable.

This advancement has driven transformations across industries, including finance, healthcare, telecommunications, energy, defense, climate modeling, and autonomous vehicles. However, since the mid-2010s, Moore's Law began facing physical limits. In processes below 5 nanometers, quantum tunneling, leakage current, and heat generation have become significant obstacles, and the miniaturization of transistors no longer directly translates into performance gains. We have entered an era where simply increasing transistor density is no longer sufficient to enhance computing power.

New Approaches Beyond Physical Limits
The end of Moore's Law does not signal the end of computing advancement. Rather, it marks a turning point where computing technologies are expanding in various directions. These include special-purpose processors, new system architectures, 3D stacking technologies, and material innovations.

Instead of relying solely on general-purpose CPUs, processors optimized for artificial intelligence (AI), graphics processing, and cryptographic calculations are gaining traction. Heterogeneous computing, which integrates CPUs, GPUs, and FPGAs within a single system to distribute tasks effectively, is maximizing overall efficiency.

3D stacking technology vertically layers chips to shorten signal transmission distances and save space. This is becoming increasingly common in high-performance computing and compact devices such as smartphones.

Moreover, new materials such as carbon nanotubes, graphene, and gallium nitride (GaN), known for high electron mobility and low heat generation, are drawing attention as the basis for next-generation semiconductors. These innovations aim not just to shrink transistors but to maximize performance through fundamentally different approaches.

The Rise of Special-Purpose Chips in the AI Era
The rapid development of AI requires new computational architectures. The computational demands of training large-scale neural network models are beyond what traditional CPUs can handle. As a result, GPUs, TPUs, and NPUs have emerged as key technologies.

GPUs, with thousands of cores for parallel processing, are used not only for gaming graphics but also for AI training, cryptography, and financial simulations. NVIDIA's GPUs have become essential infrastructure for training and deploying generative AI models, especially since the AI boom of 2023. TPUs, custom-designed by Google, power Google Search, Translate, and other AI services that handle large-scale text and image data efficiently.

NPUs are used in edge devices like smartphones and IoT devices to process AI computations in real-time. For example, Samsung's latest smartphones include Exynos NPUs developed in-house to perform offline tasks such as photo enhancement, voice recognition, and translation, enabling high-performance AI features while protecting personal data.

Recently, neuromorphic computing, which mimics the structure of the human brain, has also gained attention. Intel's Loihi chip simulates synaptic behavior to perform AI calculations with ultra-low power consumption and is being experimentally used in robotics and autonomous driving. These AI-specialized chips are evolving beyond mere speed improvements to address power consumption and security issues, aiming for overall system optimization.

The Possibilities and Challenges of Quantum Computing
Quantum computing represents a new paradigm with the potential to drastically enhance computational capabilities, overcoming the limitations of traditional digital computing. While classical computers process information in binary states (0 or 1), quantum computers use qubits, which can exist in a superposition of both 0 and 1. Additionally, entanglement between qubits enables parallel computation, allowing certain problems to be solved much faster than with current supercomputers.

One of the most well-known applications is cryptographic decoding. RSA encryption, which is widely used today, relies on the difficulty of factoring large numbers. However, quantum algorithms like Shor's algorithm can factor these numbers far more efficiently, posing a threat to current internet security systems. In response, countries are developing post-quantum cryptography, and the U.S. National Institute of Standards and Technology (NIST) has adopted quantum-resistant encryption standards.

Quantum computing also holds promise for drug discovery. Accurately simulating molecular structures is a complex task even for supercomputers, but quantum simulations can process this complexity more rapidly. Companies such as Merck in Germany and Pfizer in the U.S. are already working with IBM and D-Wave to experiment with quantum-based drug modeling.

Nevertheless, quantum computing still faces technical challenges such as qubit instability, error correction, and cryogenic system requirements. Competing approaches—including silicon qubits, superconducting qubits, ion traps, and topological qubits—are still vying for commercial viability. Despite this, major countries and corporations are making significant investments, with expectations of practical applications emerging around 2030.

The Evolution of Software and Algorithms
As hardware advances slow, software continues to hold tremendous potential. Compiler technology, operating systems, and algorithm optimization can enhance performance by severalfold on the same hardware. A basic example is how bubble sort and quick sort, though solving the same problem, differ vastly in time complexity and execution speed. Choosing the right algorithm alone can significantly improve performance.

Recent attention has been drawn to automatic parallelization and memory optimization technologies. High-performance simulations, 3D rendering, and financial modeling benefit greatly from multithreaded processing. Modern compilers analyze source code to remove unnecessary operations and reorder instructions to improve cache efficiency and power consumption.

Software optimization using AI is also growing rapidly. For instance, AI compilers like Facebook's Glow and Google's XLA analyze trained model structures and generate hardware-specific execution code. These technologies not only support high-performance computing but also enhance AI functionality in small devices like smartphones and microcontrollers.

Software remains a vital area for computing performance innovation even without new hardware, and co-design between hardware and software is expected to become a core strategy for future computing efficiency.

The Expansion of Edge and Distributed Computing
Edge computing processes data at its point of origin, reducing latency and easing the burden on central networks. A prime example is autonomous vehicles, which must process hundreds of camera images, LiDAR data, and sensor inputs per second. Sending this data to a central server would cause delays, so onboard edge processors analyze data in real time and synchronize with servers only when necessary.

In healthcare, telemedicine equipment and wearable devices analyze biosignals in real time to detect abnormalities and send alerts. Edge processors monitor heart rate, oxygen saturation, and temperature changes, enabling immediate responses.

Edge computing is also vital for privacy. Functions like voice recognition, facial recognition, and photo classification on smartphones are increasingly processed locally to reduce hacking risks. Apple, for example, installs neural processing units in iPhones to handle AI tasks directly on the device.

Going forward, the roles of cloud, edge, and local devices will become more sophisticated and integrated through distributed computing platforms. The importance of edge computing will continue to grow due to the proliferation of AI, real-time responsiveness, and energy efficiency.

New Computing That Transforms Industrial Landscapes
The end of Moore's Law does not mean the digital industry is in decline. Rather, emerging technologies are fundamentally transforming various sectors. In finance, high-performance computing is essential for real-time market analysis. In healthcare, AI-based precision diagnostics, genome analysis, and treatment simulations are becoming commonplace.

Large-scale computational capabilities are also central to infrastructure in fields such as climate modeling, renewable energy distribution, and smart transportation systems. Future industries will require not only high hardware performance but also computing capabilities that consider energy efficiency, reliability, and intelligence.

The Future and Strategic Response of Korea's Semiconductor Industry
South Korea holds a competitive edge in memory semiconductors globally. However, in the post-Moore's Law era, manufacturing alone is no longer enough to maintain this advantage. A strategic shift toward next-generation computing technologies and ecosystem development for system semiconductors is essential.

First, Korea must enhance its design and production capabilities in system semiconductors, including application processors (APs), power semiconductors, and AI accelerators. The U.S. dominates with fabless giants like NVIDIA, AMD, and Apple, while Taiwan leads advanced foundry technology with TSMC. Although Samsung Electronics manages both system semiconductor and foundry operations, Korea lacks a robust ecosystem of fabless SMEs. To address this, the government and private sector must jointly support tech startups, talent development, IP acquisition, and prototyping infrastructure.

Second, securing leadership in next-generation memory technologies—such as processing-in-memory (PIM), magnetoresistive RAM (MRAM), and resistive RAM (ReRAM)—is vital. Samsung, in particular, is pioneering PIM technology to boost AI server performance and may set future AI semiconductor standards.

Third, localization of materials, parts, and equipment is crucial. Japan's 2019 export restrictions exposed vulnerabilities in Korea's semiconductor supply chain. While localization efforts have since intensified, dependence on imports remains high for critical components and tools. Supporting domestic equipment companies and acquiring foreign technologies through partnerships or M\&A is essential.

Lastly, consistent policy support is needed. The U.S. provides massive subsidies through the CHIPS Act, and both Europe and China have designated semiconductors as strategic industries. Korea must also offer long-term support through expanded tax credits, land access, and technical education programs.

Toward a New Era of Computing
Moore's Law may have come to an end, but the evolution of computing has just begun. Innovations in materials, architectures, algorithms, and distributed structures are rapidly advancing, creating new values in intelligence, efficiency, and reliability beyond raw speed.

Future computing will move from "smaller and faster" to "smarter and more flexible." This shift is not only a technical evolution but a fundamental transformation of industrial and social structures.



¹«¾îÀÇ ¹ýÄ¢ ÀÌÈÄÀÇ ÄÄÇ»ÆÃ, ¾îµð·Î °¡´Â°¡

¹«¾îÀÇ ¹ýÄ¢ ½Ã´ëÀÇ ³¡ÀÚ¶ô
Áö³­ 60³â°£ µðÁöÅÐ Çõ½ÅÀ» À̲ö °¡Àå À§´ëÇÑ ¿£Áø Áß Çϳª´Â ¹Ù·Î ¹«¾îÀÇ ¹ýÄ¢(Moore's Law)À̾ú´Ù. 1965³â, ÀÎÅÚ °øµ¿ ⸳ÀÚ °íµç ¹«¾î´Â ¡°Ä¨ À§ÀÇ Æ®·£Áö½ºÅÍ ¼ö°¡ 2³â¸¶´Ù µÎ ¹è°¡ µÈ´Ù¡±´Â °üÂûÀ» ³»³õ¾Ò°í, ÀÌ °£´ÜÇÑ ¹ýÄ¢Àº Àü ¼¼°è ¹ÝµµÃ¼ »ê¾÷ÀÇ ³ªÄ§¹ÝÀÌ µÇ¾ú´Ù. Æ®·£Áö½ºÅÍ ¼öÀÇ Áõ°¡´Â °ð ¼Óµµ Çâ»ó, Àü·Â È¿À² °³¼±, Á¦Á¶ ´Ü°¡ Ç϶ôÀ¸·Î À̾îÁ³À¸¸ç, ÄÄÇ»ÅÍ´Â ´õ ÀÛ°í, ´õ ºü¸£°í, ´õ Àú·ÅÇÏ°Ô ÁøÈ­Çß´Ù.

ÀÌ·¯ÇÑ ¹ßÀüÀº ±ÝÀ¶, ÀÇ·á, Åë½Å, ¿¡³ÊÁö, ±¹¹æ, ±âÈÄ ¿¹Ãø, ÀÚÀ²ÁÖÇà µî »ê¾÷ Àü¹ÝÀÇ º¯È­¸¦ À̲ø¾ú´Ù. ÇÏÁö¸¸ 2010³â´ë Á߹ݺÎÅÍ ¹«¾îÀÇ ¹ýÄ¢Àº ¹°¸®Àû ÇѰ迡 Á÷¸éÇϱ⠽ÃÀÛÇß´Ù. 5³ª³ë¹ÌÅÍ ÀÌÇÏ °øÁ¤¿¡¼­´Â ¾çÀÚ Åͳθµ, ´©¼³ Àü·ù, ¹ß¿­ ¹®Á¦ µîÀÌ ±Ø½ÉÇØÁö¸é¼­ ´õ ÀÌ»ó ±âÁ¸ ¹æ½ÄÀÇ ¼ÒÇüÈ­°¡ ¼º´É Çâ»óÀ¸·Î Á÷°áµÇÁö ¾Ê°Ô µÇ¾ú´Ù. ÀÌÁ¦´Â Æ®·£Áö½ºÅÍ ¹Ðµµ Áõ°¡¸¸À¸·Î´Â ¿¬»ê ¼º´ÉÀ» ³ôÀ̱⠾î·Á¿î ½Ã´ë°¡ µµ·¡ÇÑ °ÍÀÌ´Ù.

¹°¸®Àû ÇѰ踦 ³Ñ¾î¼­´Â »õ·Î¿î Á¢±Ùµé
¹«¾îÀÇ ¹ýÄ¢ÀÌ Á¾¾ðÀ» °íÇÑ´Ù°í ÇØ¼­ °è»ê ´É·ÂÀÇ Áøº¸°¡ ¸ØÃá °ÍÀº ¾Æ´Ï´Ù. ¿ÀÈ÷·Á À̸¦ °è±â·Î °è»ê ±â¼úÀº ´Ù¾çÇÑ ¹æ½ÄÀ¸·Î È®ÀåµÇ°í ÀÖ´Ù. ´ëÇ¥ÀûÀÎ °ÍÀÌ Æ¯¼ö ¸ñÀû ÇÁ·Î¼¼¼­, »õ·Î¿î ½Ã½ºÅÛ ±¸Á¶, 3Â÷¿ø ÁýÀû ±â¼ú, Àç·á Çõ½Å µîÀÌ´Ù.

ƯÈ÷ ¹ü¿ë Áß¾Óó¸®ÀåÄ¡(CPU) ´ë½Å ÀΰøÁö´É(AI), ±×·¡ÇÈ Ã³¸®, ¾ÏÈ£ ¿¬»ê µî¿¡ ÃÖÀûÈ­µÈ ƯȭÇü ÇÁ·Î¼¼¼­µéÀÌ °¢±¤¹Þ°í ÀÖ´Ù. ¶ÇÇÑ À̱âÁ¾ ÄÄÇ»ÆÃ(heterogeneous computing)Àº CPU, ±×·¡ÇÈó¸®ÀåÄ¡(GPU), ÇöÀå ÇÁ·Î±×·¡¹Ö °¡´É ³í¸® ¼ÒÀÚ(FPGA) µîÀÌ ÇϳªÀÇ ½Ã½ºÅÛ ¾È¿¡¼­ ÀÛ¾÷À» ³ª´©¾î ó¸®ÇÏ°Ô ÇÏ¿© Àü¹ÝÀûÀÎ È¿À²À» ±Ø´ëÈ­ÇÑ´Ù.

3Â÷¿ø ÁýÀûȸ·Î(3D stacking) ±â¼úÀº ĨÀ» ¼öÁ÷À¸·Î ½×¾Æ¿Ã¸®´Â ¹æ½ÄÀ¸·Î, ½ÅÈ£ Àü¼Û °Å¸®¸¦ ´ÜÃàÇÏ°í °ø°£À» Àý¾àÇÑ´Ù. ÀÌ´Â °í¼º´É ÄÄÇ»ÆÃ°ú ½º¸¶Æ®Æù °°Àº ¼ÒÇü ±â±â¿¡¼­ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ´Ù.

¶ÇÇÑ Åº¼Ò ³ª³ëÆ©ºê, ±×·¡ÇÉ, ÁúÈ­°¥·ý(GaN) µîÀÇ »õ·Î¿î Àç·á´Â ÀüÀÚ À̵¿¼ºÀÌ ¶Ù¾î³ª°í ¹ß¿­ÀÌ Àû¾î, Â÷¼¼´ë ¹ÝµµÃ¼ ±â¼ú·Î ÁÖ¸ñ¹Þ°í ÀÖ´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ÀüȯÀº ´Ü¼øÇÑ Æ®·£Áö½ºÅÍ Ãà¼Ò°¡ ¾Æ´Ñ, ¾Æ¿¹ »õ·Î¿î ¹æ½ÄÀ¸·Î ¼º´ÉÀ» ±Ø´ëÈ­ÇÏ´Â ¹æÇâÀ¸·Î ³ª¾Æ°¡°í ÀÖ´Ù.

ÀΰøÁö´É ½Ã´ëÀÇ Æ¯¼ö ¸ñÀû ĨÀÇ ºÎ»ó
ÃÖ±Ù ÀΰøÁö´ÉÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº »õ·Î¿î ¿¬»ê ±¸Á¶¸¦ ¿ä±¸Çϰí ÀÖ´Ù. ƯÈ÷ ´ë±Ô¸ð ½Å°æ¸Á ¸ðµ¨À» ÇнÀ½ÃŰ´Â µ¥ ÇÊ¿äÇÑ ¿¬»ê·®Àº ÀüÅëÀûÀÎ Áß¾Óó¸®ÀåÄ¡(CPU)·Î´Â °¨´çÇÒ ¼ö ¾ø´Â ¼öÁØÀÌ´Ù. ÀÌ·Î ÀÎÇØ ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ½Å°æ¸Á ó¸® ÀåÄ¡(NPU) µîÀÇ Æ¯¼ö ¸ñÀû ĨÀÌ Á᫐ ±â¼ú·Î ºÎ»óÇß´Ù.

GPU´Â ¼öõ °³ÀÇ ÄÚ¾î·Î º´·Ä 󸮸¦ ¼öÇàÇÒ ¼ö ÀÖ¾î, °ÔÀÓ ±×·¡ÇÈ»Ó ¾Æ´Ï¶ó AI ÇнÀ, ¾ÏÈ£ ÇØ¼®, ±ÝÀ¶ ½Ã¹Ä·¹ÀÌ¼Ç µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ´Ù. ƯÈ÷ ¿£ºñµð¾Æ(NVIDIA)ÀÇ GPU´Â »ý¼ºÇü AIÀÇ ÇнÀ ¹× Ãß·ÐÀ» À§ÇÑ ÇÙ½É Àåºñ·Î ÀÚ¸® Àâ¾ÒÀ¸¸ç, 2023³â ÀÌÈÄ AI ºÕÀ» ÁÖµµÇÑ ÇÙ½É ÀÎÇÁ¶ó°¡ µÇ¾ú´Ù. ÅÙ¼­ ó¸® ÀåÄ¡´Â ±¸±ÛÀÌ ÀÚü ¼³°èÇÑ Ä¨À¸·Î, ÀÚ»ç ¼­ºñ½ºÀÎ ±¸±Û °Ë»ö, ¹ø¿ª, Ŭ¶ó¿ìµå ±â¹ÝÀÇ AI ±â´É¿¡ žÀçµÇ¸ç, ´ë±Ô¸ð ÅØ½ºÆ®¿Í À̹ÌÁö µ¥ÀÌÅ͸¦ ºü¸£°Ô ó¸®ÇÒ ¼ö ÀÖ´Â ±â¹ÝÀÌ µÇ°í ÀÖ´Ù.

NPU´Â ¿§Áö µð¹ÙÀ̽º, ƯÈ÷ ½º¸¶Æ®Æù°ú IoT ±â±â¿¡¼­ AI ¿¬»êÀ» ½Ç½Ã°£À¸·Î ¼öÇàÇÏ´Â µ¥ »ç¿ëµÈ´Ù. ¿¹¸¦ µé¾î, »ï¼ºÀüÀÚÀÇ Ãֽнº¸¶Æ®Æù¿¡´Â ÀÚ»ç °³¹ßÀÇ ¿¢½Ã³ë½º NPU°¡ žÀçµÇ¾î »çÁø ÀÚµ¿ º¸Á¤, À½¼º ÀνÄ, ¹ø¿ª µîÀÇ ±â´ÉÀ» ¿ÀÇÁ¶óÀο¡¼­µµ ¼öÇàÇÒ ¼ö ÀÖ´Ù. ÀÌ´Â µ¥ÀÌÅÍ Àü¼Û ¾øÀ̵µ °³ÀÎÁ¤º¸¸¦ º¸È£Çϸ鼭 °í¼º´É AI ±â´ÉÀ» Ȱ¿ëÇÒ ¼ö ÀÖ°Ô ÇÑ´Ù.

¶ÇÇÑ ÃÖ±Ù¿¡´Â ÀüÅëÀûÀÎ ¹ÝµµÃ¼ ±¸Á¶¸¦ ³Ñ¾î, Àΰ£ÀÇ ³ú¸¦ ¸ð»çÇÑ ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ(neuromorphic computing)ÀÌ ÁÖ¸ñ¹Þ°í ÀÖ´Ù. ÀÎÅÚÀÇ '·ÎÀÌÈ÷(Loihi)' ĨÀº ½Ã³À½º ±¸Á¶¸¦ ¸ð¹æÇØ ÃÊÀúÀü·ÂÀ¸·Î AI ¿¬»êÀ» ¼öÇàÇϸç, ·Îº¿ ¹× ÀÚÀ²ÁÖÇà ºÐ¾ß¿¡¼­ ½ÇÇèÀûÀ¸·Î Ȱ¿ëµÇ°í ÀÖ´Ù. ÀÌó·³ AI Ưȭ ĨÀÇ ¹ßÀüÀº ´Ü¼øÇÑ ¿¬»ê ¼Óµµ¸¦ ³Ñ¾î¼­, Àü·Â ¼Ò¸ð¿Í º¸¾È ¹®Á¦±îÁö Æ÷°ýÇÏ´Â ¡®Àüü ½Ã½ºÅÛ ÃÖÀûÈ­¡¯¸¦ ÁöÇâÇϰí ÀÖ´Ù.---

¾çÀÚ ÄÄÇ»ÆÃÀÇ °¡´É¼º°ú ÇѰè
¾çÀÚ ÄÄÇ»ÆÃÀº °è»ê ´É·ÂÀ» ȹ±âÀûÀ¸·Î Çâ»ó½Ãų ¼ö ÀÖ´Â »õ·Î¿î ÆÐ·¯´ÙÀÓÀ¸·Î, ±âÁ¸ µðÁöÅÐ ÄÄÇ»ÆÃÀÇ ÇѰ踦 ¶Ù¾î³ÑÀ» ¼ö ÀÖ´Â ÀáÀç·ÂÀ» Áö´Ñ´Ù. ±âÁ¸ ÄÄÇ»ÅÍ´Â Á¤º¸¸¦ 0 ¶Ç´Â 1ÀÇ ÀÌÁø »óÅ·Πó¸®ÇÏÁö¸¸, ¾çÀÚ ÄÄÇ»Åʹ ťºñÆ®(qubit)¸¦ ÅëÇØ 0°ú 1ÀÇ »óŸ¦ µ¿½Ã¿¡ Áö´Ò ¼ö ÀÖ´Â Áßø(superposition) »óŸ¦ Ȱ¿ëÇÑ´Ù. ¶ÇÇÑ Å¥ºñÆ® °£ÀÇ ¾ôÈû(entanglement)Àº º´·Ä 󸮸¦ °¡´ÉÇÏ°Ô ÇØ, ƯÁ¤ ¹®Á¦¿¡¼­ ±âÁ¸ ½´ÆÛÄÄÇ»Åͺ¸´Ù ÈξÀ ºü¸¥ ¼Óµµ¸¦ ³¾ ¼ö ÀÖ´Ù.

°¡Àå ´ëÇ¥ÀûÀÎ »ç·Ê´Â ¾ÏÈ£ ÇØµ¶ÀÌ´Ù. ÇöÀç ³Î¸® »ç¿ëµÇ´Â RSA ¾ÏÈ£ ü°è´Â ¼ÒÀμöºÐÇØÀÇ ¾î·Á¿òÀ» ±â¹ÝÀ¸·Î ÇÑ´Ù. ±×·¯³ª ¾çÀÚ ¾Ë°í¸®ÁòÀÎ ¼î¾î ¾Ë°í¸®Áò(Shor's algorithm)À» »ç¿ëÇϸé, °íÀüÀûÀÎ ¹æ½Äº¸´Ù ÈξÀ ºü¸£°Ô Å« ¼öÀÇ ¼ÒÀμöºÐÇØ°¡ °¡´ÉÇÏ´Ù. ÀÌ´Â °ð ÇöÀç ÀÎÅÍ³Ý º¸¾È ½Ã½ºÅÛÀÌ ¹«·ÂÈ­µÉ ¼ö ÀÖÀ½À» ÀǹÌÇÑ´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ °¢±¹Àº ¾çÀÚ ÀúÇ× ¾ÏÈ£(post-quantum cryptography)¸¦ °³¹ßÇϰí ÀÖÀ¸¸ç, ¹Ì±¹ ±¹°¡Ç¥Áرâ¼ú¿¬±¸¼Ò(NIST)´Â ¾çÀÚ ³»¼º ¾ÏÈ£ Ç¥ÁØÀ» äÅÃÇϰí ÀÖ´Ù.

¶ÇÇÑ ¾çÀÚ ÄÄÇ»ÆÃÀº ½Å¾à °³¹ß ºÐ¾ß¿¡¼­µµ Çõ½ÅÀû °¡´É¼ºÀ» Áö´Ñ´Ù. ºÐÀÚ ±¸Á¶ÀÇ Á¤È®ÇÑ ½Ã¹Ä·¹À̼ÇÀº ±âÁ¸ ½´ÆÛÄÄÇ»Åͷδ ¾î·Á¿î ¹®Á¦Áö¸¸, ¾çÀÚ ½Ã¹Ä·¹À̼ÇÀº ±× º¹À⼺À» ÈξÀ ºü¸£°Ô °è»êÇÒ ¼ö ÀÖ´Ù. µ¶ÀÏÀÇ ¸ÓÅ©(Merck), ¹Ì±¹ÀÇ È­ÀÌÀÚ(Pfizer)¿Í °°Àº Á¦¾àȸ»çµéÀº ÀÌ¹Ì IBM, D-Wave µî°ú Çù·ÂÇØ ¾çÀÚ ±â¹Ý ¾à¹° ¸ðµ¨¸µÀ» ½ÇÇèÇϰí ÀÖ´Ù.

´Ù¸¸ ¾çÀÚ ÄÄÇ»ÆÃÀº ¿©ÀüÈ÷ Å¥ºñÆ®ÀÇ ºÒ¾ÈÁ¤¼º, ¿À·ù Á¤Á¤ ±â¼ú, ³Ã°¢ ½Ã½ºÅÛ µî¿¡¼­ ±â¼úÀû ³­Á¦¸¦ ¾È°í ÀÖ´Ù. ½Ç¸®ÄÜ Å¥ºñÆ®, ÃÊÀüµµ Å¥ºñÆ®, ÀÌ¿ÂÆ®·¦, À§»ó Å¥ºñÆ® µî ´Ù¾çÇÑ ¹æ½ÄÀÌ °æÀï ÁßÀ̸ç, ¾î¶² ¹æ½ÄÀÌ »ó¿ëÈ­¿¡ À¯¸®ÇÒÁö´Â ¾ÆÁ÷ °áÁ¤µÇÁö ¾Ê¾Ò´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí ÁÖ¿ä ±¹°¡¿Í ±â¾÷Àº ¾çÀÚ ÄÄÇ»ÆÃ ±â¼ú¿¡ ´ë±Ô¸ð ÅõÀÚ¸¦ À̾°í ÀÖÀ¸¸ç, 2030³â ÀüÈÄ·Î ½ÇÁ¦ »ó¾÷Àû Ȱ¿ëÀÌ ½ÃÀÛµÉ °ÍÀ̶ó´Â Àü¸Áµµ ³ª¿Â´Ù.

¼ÒÇÁÆ®¿þ¾î¿Í ¾Ë°í¸®ÁòÀÇ ÁøÈ­
Çϵå¿þ¾î°¡ ´õ ÀÌ»ó ºñ¾àÀûÀ¸·Î ¹ßÀüÇÏÁö ¾Ê´Â ½Ã´ë, ¼ÒÇÁÆ®¿þ¾î´Â ¿©ÀüÈ÷ ¾öû³­ ÀáÀç·ÂÀ» Áö´Ï°í ÀÖ´Ù. ƯÈ÷ ÄÄÆÄÀÏ·¯, ¿î¿µÃ¼Á¦, ¾Ë°í¸®Áò ÃÖÀûÈ­´Â µ¿ÀÏÇÑ Çϵå¿þ¾î¿¡¼­µµ ¼º´ÉÀ» ¼ö ¹è Çâ»ó½Ãų ¼ö ÀÖ´Â Áß¿äÇÑ ¼ö´ÜÀÌ´Ù. °¡Àå °£´ÜÇÑ ¿¹·Î, ¹öºí Á¤·Ä°ú Äü Á¤·ÄÀº °°Àº µ¥ÀÌÅ͸¦ ó¸®ÇÏ´õ¶óµµ ½Ã°£ º¹Àâµµ Â÷ÀÌ·Î ÀÎÇØ ¿¬»ê ½Ã°£ÀÌ ¼ö½Ê ¹è Â÷À̳¯ ¼ö ÀÖ´Ù. ¾Ë°í¸®Áò ¼±Åø¸À¸·Î ¼º´É Çâ»óÀÌ °¡´ÉÇÑ ÀÌÀ¯´Ù.

ÃÖ±Ù¿¡´Â ÀÚµ¿ º´·ÄÈ­ ±â¼ú°ú ¸Þ¸ð¸® ÃÖÀûÈ­ ±â¼úµµ ÁÖ¸ñ¹Þ°í ÀÖ´Ù. ¿¹¸¦ µé¾î, °í¼º´É ¿¬»êÀ» ¿äÇÏ´Â ¹°¸® ½Ã¹Ä·¹À̼Ç, 3D ·»´õ¸µ, ±ÝÀ¶ ¸ðµ¨¸µ¿¡¼­´Â ´ÙÁß ½º·¹µå¸¦ Ȱ¿ëÇÑ ¿¬»ê ºÐÇÒÀÌ È¿À²¼º Çâ»ó¿¡ Å« ¿ªÇÒÀ» ÇÑ´Ù. Çö´ëÀÇ ÄÄÆÄÀÏ·¯´Â ¼Ò½º Äڵ带 ºÐ¼®ÇØ ºÒÇÊ¿äÇÑ ¿¬»êÀ» Á¦°ÅÇϰí, ¿¬»ê ¼ø¼­¸¦ ÀÚµ¿À¸·Î Àç¹èÄ¡ÇÏ¿© ij½Ã »ç¿ë·ü°ú Àü·Â È¿À²À» ³ôÀδÙ.

AI¸¦ Ȱ¿ëÇÑ ¼ÒÇÁÆ®¿þ¾î ÃÖÀûÈ­µµ ºü¸£°Ô ¼ºÀå ÁßÀÌ´Ù. ¿¹¸¦ µé¾î ÆäÀ̽ººÏÀÇ Glow, ±¸±ÛÀÇ XLA °°Àº AI ÄÄÆÄÀÏ·¯´Â ÇнÀµÈ ¸ðµ¨ ±¸Á¶¸¦ ÀÚµ¿À¸·Î ºÐ¼®ÇÏ¿© Çϵå¿þ¾îº° ÃÖÀû ½ÇÇà Äڵ带 »ý¼ºÇÑ´Ù. ÀÌ ±â¼úÀº °í¼º´É ¿¬»ê »Ó ¾Æ´Ï¶ó ½º¸¶Æ®Æù, ¸¶ÀÌÅ©·Î ÄÁÆ®·Ñ·¯ µî ¼ÒÇü µð¹ÙÀ̽º¿¡¼­µµ Ȱ¿ëµÇ¾î, AI ±â´ÉÀ» º¸´Ù È¿À²ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ°Ô ÇÑ´Ù.

ÀÌó·³ ¼ÒÇÁÆ®¿þ¾î´Â Çϵå¿þ¾î ¾øÀ̵µ °è»ê ¼º´ÉÀ» Çõ½ÅÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ºÐ¾ßÀ̸ç, ¾ÕÀ¸·Î´Â Çϵå¿þ¾î¡¤¼ÒÇÁÆ®¿þ¾î °øµ¿ ÃÖÀûÈ­(Co-design)°¡ ÄÄÇ»ÆÃ È¿À²ÀÇ ÇÙ½É Àü·«ÀÌ µÉ °ÍÀÌ´Ù.

¿§Áö¿Í ºÐ»ê ÄÄÇ»ÆÃÀÇ È®Àå
¿§Áö ÄÄÇ»ÆÃÀº µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â ÇöÀå¿¡¼­ Á÷Á¢ ¿¬»êÀ» ó¸®ÇÔÀ¸·Î½á, Áö¿¬½Ã°£À» ÁÙÀÌ°í ³×Æ®¿öÅ© ºÎ´ãÀ» °æ°¨½ÃŰ´Â Àü·«ÀÌ´Ù. ´ëÇ¥ÀûÀÎ »ç·Ê·Î´Â ÀÚÀ²ÁÖÇàÂ÷¸¦ µé ¼ö ÀÖ´Ù. ÀÚÀ²ÁÖÇàÂ÷´Â ÃÊ´ç ¼ö¹é ÀåÀÇ Ä«¸Þ¶ó À̹ÌÁö, ¶óÀÌ´Ù µ¥ÀÌÅÍ, ¼¾¼­ Á¤º¸¸¦ ó¸®ÇØ¾ß Çϸç, À̸¦ Áß¾Ó ¼­¹ö·Î º¸³Â´Ù°¡´Â ½Ç½Ã°£ ¹ÝÀÀÀÌ ºÒ°¡´ÉÇÏ´Ù. µû¶ó¼­ Â÷·® ³»ºÎÀÇ ¿§Áö ¿¬»ê ÀåÄ¡°¡ µ¥ÀÌÅ͸¦ Áï½Ã ó¸®Çϰí, ÇÊ¿äÇÑ °æ¿ì¿¡¸¸ ¼­¹ö¿Í µ¿±âÈ­ÇÏ´Â ±¸Á¶¸¦ °®Ãá´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­µµ ¿ø°Ý Áø·á Àåºñ¿Í ¿þ¾î·¯ºí ±â±âµéÀº ȯÀÚÀÇ »ýü ½ÅÈ£¸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇØ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ°í °æ°í¸¦ º¸³½´Ù. À̶§ ¿§Áö ´ÜÀÇ ÇÁ·Î¼¼¼­°¡ ½É¹Ú¼ö, »ê¼Ò Æ÷È­µµ, ü¿Â º¯È­ µîÀ» ºÐ¼®ÇØ º´¿ø¿¡ ¾Ë¶÷À» º¸³»´Â ½Ã½ºÅÛÀÌ ¿î¿µµÇ°í ÀÖ´Ù.

¶ÇÇÑ ¿§Áö ÄÄÇ»ÆÃÀº °³ÀÎÁ¤º¸ º¸È£ Ãø¸é¿¡¼­µµ Áß¿äÇÏ´Ù. ¿¹¸¦ µé¾î ½º¸¶Æ®Æù¿¡¼­ À½¼º ÀνÄ, ¾ó±¼ ÀνÄ, »çÁø ÀÚµ¿ ºÐ·ù ±â´ÉÀ» »ç¿ëÇÒ ¶§, »ç¿ëÀÚÀÇ µ¥ÀÌÅ͸¦ Ŭ¶ó¿ìµå¿¡ Àü¼ÛÇÏÁö ¾Ê°í µð¹ÙÀ̽º ³»ºÎ¿¡¼­ ó¸®Çϸé ÇØÅ· À§ÇèÀÌ ÁÙ¾îµç´Ù. ¾ÖÇÃÀº À̸¦ À§ÇØ ¾ÆÀÌÆù¿¡ Àü¿ë ½Å°æ¸Á ĨÀ» žÀçÇØ AI ±â´ÉÀ» ¿Âµð¹ÙÀ̽º·Î ó¸®ÇÏ´Â Àü·«À» ÅÃÇϰí ÀÖ´Ù.

¾ÕÀ¸·Î´Â Ŭ¶ó¿ìµå, ¿§Áö, ·ÎÄà µð¹ÙÀ̽º °£ÀÇ ¿ªÇÒ ºÐ´ãÀÌ ´õ Á¤±³ÇØÁö¸ç, À̸¦ ÅëÇÕÀûÀ¸·Î °ü¸®ÇÏ´Â ºÐ»ê ÄÄÇ»ÆÃ Ç÷§ÆûÀÌ º¸ÆíÈ­µÉ °ÍÀÌ´Ù. ¿§ÁöÀÇ Á߿伺Àº AIÀÇ º¸ÆíÈ­, ½Ç½Ã°£ ¹ÝÀÀ, ¿¡³ÊÁö È¿À²¼ºÀ̶ó´Â Ãø¸é¿¡¼­ °è¼Ó Áõ°¡ÇÒ Àü¸ÁÀÌ´Ù.

»ê¾÷ ÁöÇüÀ» ¹Ù²Ù´Â »õ·Î¿î ÄÄÇ»ÆÃ
¹«¾îÀÇ ¹ýÄ¢ÀÌ ³¡³µ´Ù°í ÇØ¼­ µðÁöÅÐ »ê¾÷ÀÌ À§ÃàµÇ´Â °ÍÀº ¾Æ´Ï´Ù. ¿ÀÈ÷·Á »õ·Ó°Ô µîÀåÇÑ ±â¼úµéÀÌ °¢ »ê¾÷À» ±Ùº»ÀûÀ¸·Î ¹Ù²Ù°í ÀÖ´Ù. ±ÝÀ¶¿¡¼­´Â ÃÊ´ÜÀ§·Î º¯µ¿ÇÏ´Â ½ÃÀåÀ» ½Ç½Ã°£À¸·Î ºÐ¼®Çϱâ À§ÇÑ °í¼º´É ÄÄÇ»ÆÃÀÌ ¿ä±¸µÇ¸ç, ÀÇ·á¿¡¼­´Â AI ±â¹ÝÀÇ Á¤¹Ð Áø´Ü, À¯Àüü ºÐ¼®, Ä¡·á ½Ã¹Ä·¹À̼ÇÀÌ º¸ÆíÈ­µÇ°í ÀÖ´Ù.

±âÈÄ ¸ðµ¨¸µ, ½ÅÀç»ý ¿¡³ÊÁö ¹èºÐ, ½º¸¶Æ® ±³Åë¸Á ÃÖÀûÈ­ µî¿¡¼­µµ ´ë±Ô¸ð ¿¬»ê ´É·ÂÀº »çȸ ÀÎÇÁ¶óÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸®Àâ¾Ò´Ù. ¹Ì·¡ »ê¾÷Àº Çϵå¿þ¾îÀÇ ´Ü¼øÇÑ ¼º´ÉÀ» ³Ñ¾î¼­, ¿¡³ÊÁö È¿À², ½Å·Ú¼º, Áö´ÉÈ­ ¼öÁرîÁö °í·ÁÇÑ ÃÑüÀû ÄÄÇ»ÆÃ ¿ª·®À» ¿ä±¸ÇÏ°Ô µÉ °ÍÀÌ´Ù.

Çѱ¹ ¹ÝµµÃ¼ »ê¾÷ÀÇ ¹Ì·¡¿Í ´ëÀÀ Àü·«
Çѱ¹Àº ¹ÝµµÃ¼ ¸Þ¸ð¸® ºÐ¾ß¿¡¼­ ¼¼°èÀûÀÎ °æÀï·ÂÀ» º¸À¯Çϰí ÀÖÁö¸¸, ¹«¾îÀÇ ¹ýÄ¢ ÀÌÈÄ ½Ã´ë¿¡´Â ´Ü¼ø Á¦Á¶ ´É·Â¸¸À¸·Î´Â °æÀï ¿ìÀ§¸¦ À¯ÁöÇÏ±â ¾î·Æ´Ù. Áö±Ý ÇÊ¿äÇÑ °ÍÀº Â÷¼¼´ë ¿¬»ê ±â¼ú·ÎÀÇ ÀüȯÀ» ¼±µµÇϰí, ½Ã½ºÅÛ ¹ÝµµÃ¼ »ýŰ踦 À°¼ºÇÏ´Â Àü·«Àû Á¢±ÙÀÌ´Ù.

¸ÕÀú ½Ã½ºÅÛ ¹ÝµµÃ¼, ƯÈ÷ ¾ÖÇø®ÄÉÀÌ¼Ç ÇÁ·Î¼¼¼­(AP), Àü·Â ¹ÝµµÃ¼, AI °¡¼Ó±â µîÀÇ ¼³°è ¹× Á¦Á¶ ¿ª·®À» Ű¿ö¾ß ÇÑ´Ù. ¹Ì±¹Àº ¿£ºñµð¾Æ, AMD, ¾ÖÇà °°Àº ÃÊ´ëÇü ÆÕ¸®½º(fabless) ±â¾÷ÀÌ °­¼¼À̸ç, ´ë¸¸Àº TSMC¸¦ Áß½ÉÀ¸·Î ÷´Ü °øÁ¤°ú ÆÄ¿îµå¸® »ê¾÷À» Àå¾ÇÇϰí ÀÖ´Ù. Çѱ¹Àº »ï¼ºÀüÀÚ°¡ ½Ã½ºÅÛ ¹ÝµµÃ¼¿Í ÆÄ¿îµå¸®¸¦ µ¿½Ã¿¡ ¿î¿µÇÏÁö¸¸, ÆÕ¸®½º Áß¼Ò±â¾÷ÀÇ »ýŰ谡 Ãë¾àÇÏ´Ù. À̸¦ º¸¿ÏÇϱâ À§ÇØ Á¤ºÎ¿Í ¹Î°£ÀÌ ÇÔ²² ±â¼ú â¾÷, ÀÎÀç ¾ç¼º, IP È®º¸, ½ÃÁ¦Ç° »ý»ê ÀÎÇÁ¶ó µîÀ» Áö¿øÇØ¾ß ÇÑ´Ù.

µÑ°, Â÷¼¼´ë ¸Þ¸ð¸® ±â¼úÀÎ PIM(¸Þ¸ð¸® ³» ¿¬»ê), MRAM(ÀÚ±âÀúÇ× ¸Þ¸ð¸®), ReRAM(ÀúÇ׺¯È­ ¸Þ¸ð¸®) µîÀÇ ¼±Á¡ÀÌ Áß¿äÇÏ´Ù. ƯÈ÷ »ï¼ºÀüÀÚ´Â PIM ±â¼úÀ» ¾Õ¼­ ½ÇÇöÇϸç AI ¼­¹öÀÇ ¿¬»ê ¼Óµµ¸¦ ȹ±âÀûÀ¸·Î ²ø¾î¿Ã¸®°í ÀÖÀ¸¸ç, ÇâÈÄ AI ¹ÝµµÃ¼ Ç¥ÁØÀ» ÁÖµµÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ âÃâÇϰí ÀÖ´Ù.

¼Â°, ¼ÒÀ硤ºÎǰ¡¤Àåºñ ÀÚ¸³È­°¡ ÇʼöÀûÀÌ´Ù. 2019³â ÀϺ»ÀÇ ¼öÃâ ±ÔÁ¦´Â Çѱ¹ ¹ÝµµÃ¼ »ê¾÷ÀÇ Ãë¾à¼ºÀ» µå·¯³½ »ç°ÇÀ̾ú´Ù. ÀÌÈÄ ±¹»êÈ­ ³ë·ÂÀÌ º»°ÝÈ­µÇ¾úÁö¸¸, ¿©ÀüÈ÷ ÇÙ½É Àåºñ¿Í ¼ÒÀç¿¡¼­ ¼öÀÔ ÀÇÁ¸µµ°¡ ³ô´Ù. À̸¦ À§ÇØ ±¹³» Àåºñ±â¾÷ À°¼º°ú ÇØ¿Ü ±â¼ú Á¦ÈÞ, ÀμöÇÕº´(M&A)À» ÅëÇÑ ¿ª·® È®º¸°¡ Áß¿äÇÏ´Ù.

¸¶Áö¸·À¸·Î Á¤ºÎÀÇ Á¤Ã¥Àû µÞ¹Þħµµ Áß¿äÇÏ´Ù. ¹Ì±¹Àº ¡®Ä¨½º¹ý(CHIPS Act)¡¯À» ÅëÇØ ÀÚ±¹ ¹ÝµµÃ¼ »ê¾÷¿¡ ´ë±Ô¸ð º¸Á¶±ÝÀ» Á¦°øÇϰí ÀÖÀ¸¸ç, À¯·´°ú Áß±¹µµ ¹ÝµµÃ¼¸¦ Àü·« »ê¾÷À¸·Î ÁöÁ¤Çϰí ÀÖ´Ù. Çѱ¹ ¿ª½Ã ¼¼¾×°øÁ¦ È®´ë, ¿ëÁö È®º¸, ±â¼ú ±³À° °­È­ µî Àå±âÀû Áö¿øÀÌ ÇÊ¿äÇÏ´Ù.---

»õ·Î¿î °è»êÀÇ ½Ã´ë¸¦ ÇâÇÏ¿©
¹«¾îÀÇ ¹ýÄ¢Àº ³¡³µÁö¸¸, °è»ê ±â¼úÀÇ Áøº¸´Â ÀÌÁ¦ ½ÃÀÛÀÏÁöµµ ¸ð¸¥´Ù. ¹°¸®Àû ¼ÒÀÚÀÇ ÇѰ踦 ³Ñ¾î¼­´Â »õ·Î¿î Àç·á, ¾ÆÅ°ÅØÃ³, ¾Ë°í¸®Áò, ºÐ»ê ±¸Á¶°¡ µ¿½Ã´Ù¹ßÀûÀ¸·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ´Ü¼øÇÑ ¿¬»ê ¼Óµµ¸¦ ³Ñ¾î¼­ Áö´É, È¿À², ½Å·Ú¼ºÀ̶ó´Â »õ·Î¿î °¡Ä¡¸¦ ¸¸µé¾î³»°í ÀÖ´Ù.

¾ÕÀ¸·ÎÀÇ ÄÄÇ»ÆÃÀº ¡®´õ ÀÛ°í ºü¸£°Ô¡¯°¡ ¾Æ´Ï¶ó ¡®´õ ¶È¶ÈÇϰí À¯¿¬Çϰԡ¯·Î ³ª¾Æ°¥ °ÍÀÌ´Ù. ÀÌ º¯È­´Â ±â¼úÀû Áøº¸¸¦ ³Ñ¾î, »ê¾÷ ÁöÇü°ú »çȸ ±¸Á¶ Àüü¸¦ À籸¼ºÇÏ´Â Ä¿´Ù¶õ ÀüȯÁ¡ÀÌ µÉ °ÍÀÌ´Ù.

ÀÌÀü

¸ñ·Ï